Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Lateral ; Interposed nuclei ; Ipsilateral descending B.C. ; Lateral parvocellular reticular formation ; Trigeminal complex ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution, organization and origin of the ipsilateral descending limb of the Brachium Conjunctivum (B.C.), have been studied in the rat by using anterograde and retrograde tracing techniques. After injections of tritiated leucine/proline into the lateral cerebellar nucleus, covering both its medial part, corresponding to the dorsolateral hump (DLH) of Goodman et al. (1963) and its lateral part, (designated here as the lateral dentate, LD), and the neighboring interposed nucleus (NI), emerging fibres are numerous and leave laterally from the B.C. On the contrary, injections restricted to LD reveal very few such fibers. Within the lateral parvocellular reticular formation (LPRF) terminal labelling is heavy, and moderate to sparse within the adjacent trigeminal complex. Rostro-caudally, silver grain accumulation within the LPRF extends from the level of the motor trigeminal nucleus (VM) to the pyramidal decussation, exhibiting a cephalocaudal decrease of grain density. Within the trigeminal complex, labelling occurs in the caudal VM, the dorsal portion of the principal sensory nucleus, and within and around the trigeminal spinalis oralis. In addition, the area surrounding the VM (in part corresponding to the supratrigeminal region of Lorente de Nó 1922, 1933) is moderately labelled. After injections of HRP into various levels of the ipsilateral descending B.C.'s projection field, retrogradely labelled cells are numerous within the DLH. A slightly lesser amount of labelled cells are found in the lateral half of the NI, primarily concerning the nucleus interpositus posterior. Within the LD, only a few labelled cells are observed: these are mainly restricted to the dorsal portion at rostral levels of the nucleus. The results obtained by both the anterograde and retrograde studies suggest an absence of a topographic organization within this descending B.C. component. The possible functional meaning of these results is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Motor cortex ; Reticular thalamic nuclear complex ; Ventrolateral thalamic nucleus ; Intracortical microstimulation ; WGA-HRP-Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The projection systems which arise from the motor cortex to reach the nucleus ventralis lateralis (VL) were investigated in the rat. They included a direct as well as an indirect projection via the reticularis thalami nuclear complex (RT). The investigation was performed in two steps: i) the former concerned the projection to the VL as well as to the RT from individual cortical foci electrophysiologically identified by the motor effects evoked by electrical stimulation; the second step concerned the projection from the RT to functionally defined regions of the VL. The direct projection from the motor cortex to the VL is somatotopically arranged. The projection reciprocates the fiber system directed from the VL to the motor cortex. Thus cortical zones controlling the motor activity of the proximal segments of the limbs project onto the regions of the VL that project back to these same cortical areas. With regard to cortical zones controlling the motor activity of the distal segments of the limbs, they not only project to the region of the VL specifically related to them, but also to the region of the VL associated with the cortical areas responsible for movements of the proximal parts of the same limb. In that case fiber terminals were more dense in the VL region controlling the proximal segment than in the region controlling the distal segment of the same limb. This organization suggests that proximal adjustments may be automatically provided by the motor activity of the distal segments of the same limb. The motor cortex projects to the rostral region of the RT with a precise topographical organization. In particular, the projection shows a dorsoventral organization in the RT in relation to the caudorostral body representation in the motor cortex. The projection which arises from the rostral region of the RT also reaches the VL with a topographical arrangement. It discloses a rostrocaudal organization in the VL in relation to a dorsoventral displacement in the RT. Comparing the projection from the motor cortex to the RT and that from this nuclear complex to the VL it was shown that the regions of the VL and their receptive cortical areas were associated with the same regions of the RT. It was therefore concluded that the motor cortical projection to the VL relayed by the RT is somatotopically organized. In both direct and relayed pathways the projections from “hind-” and “forelimb” motor area are segregated, whereas the “head” projection overlaps, at least partially, the “forelimb” terminal field. The cortico-VL and the cortico-RT-VL pathways differ by the higher complexity of the former system. Projections from the cortical zones of proximal and distal segments of the limbs largely overlap in RT whereas direct cortico-VL connections disclose a precise complex arrangement. Finally, the possible influence of the two pathways upon thalamic motor relay cells is suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...