Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
  • Molecular cloning  (2)
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Molecular cloning ; Nitrogen mustard hyper-resistance ; Choline transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The recessive hnm1 mutant allele is responsible for hyper-resistance to nitrogen mustard in Saccharomyces cerevisiae. Transformation with a single-copy HNM1 wild-type allele of such hyper-resistant mutants will restore wild-type sensitivity to nitrogen mustard. By contrast the presence of multi-copy vectors containing HNM1, in either a hyper-resistant hnm1 mutant or an HNM1 wild-type, will lead to a novel, mustard-sensitive phenotype unrelated to defects in DNA repair genes. Gene disruption of HNM1 revealed that this gene is nonessential for cells prototrophic for choline (CHO1) but lethal for cells with a cho1 genotype. Sensitivity to nitrogen mustard of wild-type HNM1, but not of hnm1 mutants, depends on the choline content of the growth medium, with cells grown in choline-free medium exhibiting the highest sensitivity. Sequencing of a 300 bp DNA fragment of HNM1 revealed the identity of this gene with the CTR locus, which is responsible for choline transport in Saccharomyces cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 83-84 
    ISSN: 1432-0983
    Keywords: DNA isolation ; Agarose gels ; Molecular cloning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present a simple method for the isolation of DNA from agarose gels that is economic, fast, and independent of electrical equipment. DNA fragments of up to 6 kb can be easily extracted within 5 min using a disposable plastic syringe and filter paper. Total extraction of DNA fragments between 10 and 20 kb in size is achieved by concentrating the DNA flushed from the gel in a DNA-binding column.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II sequence ; CDC28 ; SUR1 homolog ; putative surface protein ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The sequence of a 5653 bp DNA fragment of the right arm of chromosome II of Saccharomyces cerevisiae contains two unknown open reading frames (YBR1212 and YBR1213) next to gene CDC28. Gene disruption reveals both putative genes as non-essential. ORF YBR1212 encodes a predicted protein with 71% similarity and 65% identity (total polypeptide of 376 aa) with the 378 aa Sur1 protein of S. cerevisiae, while the putative product of ORF YBR1213, which is strongly expressed, has 28% identity with a Lactococcus lactis-secreted 45 kDa protein and 24% identity with the Saccharomyces cerevisiae AGA1 gene product. The total sequence of the fragment has been submitted to the EMBL databank (accession number X80224).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 783-785 
    ISSN: 0749-503X
    Keywords: Multicopy vector ; yeast ; formaldehyde ; hyper-resistance ; transformant selection ; vector stability ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Formaldehyde (FA), a chemical with low toxic potential, is used as sole selective agent for transformation in the yeast Saccharomyces cerevisiae. Neither stable auxotrophic markers in recipient cells nor defined synthetic media are needed when multicopy vector YFRp1, containing the yeast SFA gene, is employed for yeast transformation. The SFA gene gives stability to the vector and its yeast (and other) passenger genes when transformants are propagated in complex media supplemented with 3-5 mM-FA. Use of inexpensive FA and non-synthetic, undefined media will lower the cost of yeast transformant propagation considerably and thus make feasible large-volume industrial application of transformants containing YFRp1 derivatives.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...