Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • bovine brain  (1)
  • physical quantities of relaxation transitions  (1)
  • thermally stimulated current depolarization  (1)
Material
Years
Keywords
  • 1
    ISSN: 1573-6903
    Keywords: Macrophage migration inhibitory factor ; isoforms ; primary structure ; bovine brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the course of the study of the primary structures and molecular mechanisms of action of immunologically active compounds of the nervous system we have isolated from the soluble fraction of total bovine brain two heat-stable proteins. The purification procedure was mainly based on DEAE-Servacel ion-exchange chromatography and reversed-phase HPLC. The proteins were identified by the N-terminal Edman microsequence analysis and database searching as macrophage migration inhibitory factor (MIF). The N-terminal sequences for MIF1 and MIF2 were found to be identical. According to mass spectral analysis, the molecular masses for MIF1 and MIF2 were determined respectively as 12,369.21 and 12,299.7 Da. In addition, we have also isolated a third peptide having the same N-terminal sequence and Mr 9,496.2 that seems to be a proteolytic fragment of MIF. Using p-hydroxyphenylpyruvate as a substrate, we have not revealed tautomerase activity of either MIF1 or MIF2. As both the immunologic and enzymatic activities were reported to be expressed by the oligomeric structure of MIF, we suggest that the present study may give additional information on MIF in terms of structural properties of this protein. A comparatively simple purification procedure is presented that may be widely used for simultaneous isolation in one run of MIF isoforms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1595-1608 
    ISSN: 0887-6266
    Keywords: PVC blends ; thermally stimulated current depolarization ; dynamic mechanical analysis ; physical quantities of relaxation transitions ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A number of blends based on suspension poly(vinyl chloride) and stabilizers with poly(ethylene) chlorinated in a fluidized-bed reactor containing 21.8% chlorine, hydroxyl-terminated poly(butadiene), and ethylene-propylene-diene terpolymer have been studied using such methods as thermally stimulated current depolarization and dynamic mechanical analysis. Some dielectric and thermodynamic parameters (τmax, τo, Ea, ΔH*, ΔSE*, ΔG*, μeff) have been determined. Blends containing randomly chlorinated poly(ethylene) exhibited dipole-dipole interactions between the macromolecules of poly(vinyl chloride) which decreased at the expense of the long sequences of nonchlorinated methylene groups. Simultaneously, an increased physical interaction between poly(vinyl chloride) and the additives was observed in blends containing chlorinated poly(ethylene) and/or hydroxyl-terminated poly(butadiene), and ethylene-propylene-diene terpolymer. On the basis of the data of dynamic mechanical analysis obtained a heterogeneous structure of the blends is suggested. The development of a boundary interfacial layer with a proper region of relaxation proves the formation of compatible structures between the components. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1595-1608, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...