Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 465-479 
    ISSN: 0271-2091
    Keywords: Convective diffusion ; Chemical reaction ; Finite element method ; Boundary element method ; Combined method ; Coupling method ; COD ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical method is presented to analyse a steady convection-diffusion problem with a first-order chemical reaction defined on an infinite region. The present method is based on the combined finite element and boundary element methods. For one- and two-dimensional examples in an infinite region the numerical results by the present method are in excellent agreement with the exact solutions. As a practical application, the simulation of the concentration distribution of the chemical oxygen demand at Kojima Bay is carried out.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 1219-1243 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new finite element technique for the analysis of wave run-up is presented in this paper. In this finite element approach, the movement of the shoreline is expressed by that of the nodal points at the wave front, and an auto mesh generation technique is effectively used. The present method is tested by the comparison with the experimental result of a channel with uniform slope, and two numerical examples are reported to show the efficiency of this method. As a final example, the tsunami run-up caused by the 1983 Nihonkai-Chubu earthquake is analysed and compared with actual records of the flooded area.
    Additional Material: 27 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 43-66 
    ISSN: 0271-2091
    Keywords: multiple-level model ; finite element method ; open boundary condition ; tidal current analysis ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The results of a research project to verify the newly improved multiple- level model for 3D tidal current analysis in Tokyo Bay are presented. The improved multiple-level model includes additional effects due to Coriolis force, river inflows and wind shear stresses. Furthermore, a new numerical treatment of the open boundary condition was applied which effectively eliminated the spurious reflective waves often generated by various numerical methods simulating free surface flows. The mean (time-averaged or residual) and tidal currents in Tokyo Bay were simulated as examples to demonstrate the validity and capability of the newly improved multiple-level model. A series of numerical experiments was conducted to carefully examine the tidal circulations affected by the forcing factors of Coriolis force, river inflows and wind shears, both individually and combined. The numerical results demonstrated that the effects of each forcing term are physically reasonable, with the wind shear effect being the most significant and the case including all forcing terms being in best overall agreement with the field data collected in Tokyo Bay by the Ministry of Transportation. This study has contributed not only to the verification of the newly improved multiple-level model but also to the enhancement of the accuracy of numerical simulations of three-dimensional flow in coastal waters by this model.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 1015-1024 
    ISSN: 0029-5981
    Keywords: parameter identification ; thermal conduction ; sensitivity equation ; adjoint equation ; finite element method ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper deals with the inverse analysis of a thermal conduction problem, in which the thermal conductivity is identified as an unknown parameter, which is determined so as to minimize the cost function represented by the square of the difference between the computed and observed temperatures at pre-assigned observation points. To minimize the cost function, both sensitivity equation and adjoint equation methods can be adopted. The sensitivity equation can be introduced by differentiating the governing equation directly. The sensitivity coefficient is obtained by the sensitivity equation. The adjoint equation is introduced via a variational approach using a Lagrange multiplier. The Lagrange multiplier is solution to an adjoint equation. Both sensitivity coefficient and Lagrange multiplier are used to calculate the gradient of the cost function. The purpose of this paper is to compare the sensitivity equation and adjoint equation methods from the convergence and computational efficiency points of view. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 7 (1987), S. 1053-1075 
    ISSN: 0271-2091
    Keywords: ALE Method ; Incompressible Viscous Flow ; Velocity Correction Method ; Free Surface ; Linear Interpolation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, free surface flow problems involving large free surface motions are analysed using finite element techniques. In solving these problems an arbitrary Lagrangian-Eulerian (ALE) kinematical description of the fluid domain is adopted, in which the nodal points can be displaced independently of the fluid motion. This formulation leads to an easy and accurate treatment of fluid-fluid interfaces, and greater distortions in the fluid motions can be handled than would be allowed by a purely Lagrangian method.This paper describes the basic methodology, presents finite element approximations and discusses such matters as stability, accuracy and rezoning. The generality and the advantage of the present method are discussed, and its versatility is demonstrated through a few numerical experiments.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 7 (1987), S. 953-984 
    ISSN: 0271-2091
    Keywords: Navier - Stokes equations ; Lagrangian method ; Finite element method ; Galerkin formulatiion ; Linear interpolation ; Free surface ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new Lagrangian finite element formulation is presented for time-dependent incompressible free surface fluid flow problems described by the Navier-Stokes equations. The partial differential equations describing the continuum motion of the fluid are discretized using a Galerkin procedure in conjunction with the finite element approximation. Triangular finite elements are used to represent the dependent variables of the problem. An effective time integration procedure is introduced and provides a viable computational method for solving problems with equality of representation of the pressure and velocity fields. Its success has been attributed to the strict enforcement of the continuity constraint at every stage of the iterative process. The capabilities of the analysis procedure and the computer programs are demonstrated through the solution of several problems in viscous free surface fluid flow. Comparisons of results are presented with previous theoretical, numerical and experimental results.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 559-578 
    ISSN: 0271-2091
    Keywords: Boundary-type finite element method ; Helmholz equation ; Mild-slope equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope equations. Four types of interpolation function are examined based on trigonometric function series. Three-node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are tested; these are all non-conforming elements. Three types of numerical example show that the three-node triangular and four-node quadrilateral elements are useful for practical analysis.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 789-801 
    ISSN: 0271-2091
    Keywords: identification ; optimal control ; finite element method ; temperature control system ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: To avoid the use of pesticides on putting greens of golf courses, a temperature regulator system is strongly recommended nowadays in Japan. To maintain grass on the putting green without pesticide, the temperature of the ground should be controlled. This system consists of a cooling machine and buried pipes in the ground. The temperature of the water in the pipes cannot be regulated. In this paper, both identification and control problems are presented by the minimization technique and applied to a practical problem. To establish the system, it is important to obtain accurate parameters which are included in the governing equation. These parameters can be determined by parameter identification. The conjugate gradient method is used for the parameter identification procedure. The control problem aims to make the temperature at arbitrary points close to the objective temperature. The discrete-time dynamic programming is used for the control procedure.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 793-811 
    ISSN: 0271-2091
    Keywords: Three-step method ; Convection-dominated flows ; Unsteady incompressible flows ; Density flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a three-step finite element method and its applications to unsteady incompressible fluid flows. Stability analysis of the one-dimensional pure convection equation shows that this method has third-order accuracy and an extended numerical stability domain in comparison with the Lax--Wendroff finite element method. The method is cost-effective for incompressible flows because it permits less frequent updates of the pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the present method does not contain any new higher-order derivatives, which makes it suitable for solving non-linear multidimensional problems and flows with complicated boundary conditions. The three-step finite element method has been used to simulate unsteady incompressible flows. The numerical results obtained are in good agreement with those in the literature.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 659-670 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new version of a numerical algorithm for the Lagrangian treatment of incompressible fluid flows with free surfaces is developed. The novel features of the present method are the adoptions of the Lagrangian finite element method and the velocity correction technique. The use of the velocity correction approach makes the computational scheme extremely simple in algorithmic structure. Hence, the present method is particularly attractive for large-scale problems. The techniques discussed here are applied to some two-dimensional sloshing problems, which may indicate the versatility and effectiveness of the present method.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...