Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The Large Helical Device (LHD) is the largest helical machine with superconducting coils. Key diagnostics issues for LHD are: (a) capability for multidimensional measurements because of the nonaxisymmetric toroidal plasma; (b) measurements of the electric field; (c) cross check of fundamental parameters using different methods; (d) advanced measurements appropriate for steady-state operation; and (e) a satisfactory data acquisition system. The design and research and development of plasma diagnostics were carried out taking these issues into consideration. As a result, the present status of diagnostics is described: diagnostics for LHD operation, fundamental diagnostics for plasma performance, diagnostics for physics subjects, innovative diagnostics and diagnostics for long-pulse operation. The LHD experiment started in March, 1998. Since then, the development of diagnostics has kept pace with the experimental campaigns. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have achieved long-pulse plasma heating using a negative-ion-based neutral beam injector (NBI) in the large helical device (LHD), where the confinement magnetic field is generated by only external superconducting coils. In the initial long-pulse experiments at lower power than that in short-pulse experiments, 80 keV–1.1 MW NBI heating lasted for 10 s with a little increase in the plasma density at the pulse end. Almost steady-state plasma heating was achieved for 21 s with 66 keV–0.6 MW NB injection. Plasma relaxation oscillation phenomena at a period of 1–2 s were also observed for 20 s. Above 1 keV plasma was easily sustained with a long-pulse NBI heating in LHD, without the current drive nor the disruption in tokamaks. Negative ion source operation was stable and the cooling water temperature rise of beam accelerator grids was nearly saturated with a temperature rise below 10 °C. For a higher power injection, the pulse duration is determined by the beam blocking, where the reionization loss is exponentially increased together with an increase in outgas in the injection port. The port conditioning by a careful repetition of injection is effective to the extension of the injection duration and the plasma maintenance duration. The initial long-pulse NBI heating at the reduced power has demonstrated an ability of steady-state operation in superconducting LHD. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Behavior of impurity ions has been investigated using visible spectroscopy in the GAMMA10 tandem mirror. A 40 channel visible spectrometer system has been developed for measurements of the ion temperature and ion flow velocity. The spectrometer consists of a 100 cm monochromator, a 40 channel optical fiber array and an image intensifier tube coupled with a charge coupled device TV camera. The spectra from low ionization states of oxygen and carbon are measured in ion cyclotron range of frequency heated plasmas. High ion temperatures (3–10 keV) of O4+ are observed in the anchor region, where the minimum B mirror field is produced by baseball coils. The O4+ ion is heated by the fourth harmonic frequency of O4+, which is most likely due to the cyclotron higher harmonic damping. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 1021-1024 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Magnetic reconnection phenomena are documented by a set of noninvasive fast diagnostics during the crash phase of sawtooth oscillations. The electron cyclotron emission diagnostic system provides the highest resolution for measuring time evolution of electron temperature profile during a typical Tokamak Fusion Test Reactor fast sawtooth crash. The x-ray tomography also contains fast time scale information of the electron temperature profile and additionally the impurity concentration. Just before the crash, a shrinking circular hot peak and growing crescent-shaped flat island appear in the inside of the inversion radius on a bird's-eye view of the electron temperature profile. The electron temperature gradient inside the inversion radius diminishes to nearly zero after the crash. Concomitantly, q(r) profile [q(r)=local safety factor] is measured by the motional stark effect (MSE) diagnostics to verify a magnetic field line reconnection during the sawtooth oscillation. Initial MSE data indicate that central q values increases by 5%–10% during the sawtooth crash phase even when the pressure gradient diminishes inside the q=1 region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number ((approximately-greater-than)100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 4757-4759 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A rotational tomography technique for noncircular tokamak plasmas has been developed. Using a linear transformation from an elliptic coordinate system to the circular one, and compensating for the Shafranov shift, the elliptic plasma shape is transformed to the concentric circular shape. Fitting the data of a quarter rotation to the Fourier–Bessel expansions, the tomography is performed. This technique is applied to the snake oscillation, to the slow sawtooth crash, and to the post-cursor oscillations of noncircular plasmas on JET.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A 14-channel grating polychromator for the purpose of measuring the electron cyclotron emission (ECE) spectrum has been developed and installed on the large helical device (LHD). The grating polychromator has a Czerny–Turner setup. The main advantage of the grating polychromator is that it has a broad spectral range. Hence, it can be utilized at different magnetic field strengths. Changing the angle or replacing the grating can do this. Gratings with a grid constant of d=2.3, 3, and 5 mm and a blaze angle of 20° can be applied and the scattered spectrum is directed to 14-liquid He cooled InSb detectors. Standard operation is performed with d=3 mm, frange=148–105 GHz. This is second harmonic ECE for B=2.75 T. Each channel has a spectral resolution of Δf (full width at half maximum)=2.6 GHz or f/Δf=60 at f=150 GHz. The properties of the instrument and first experimental results of LHD ECE will be described in this article. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 3415-3422 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Reconstruction techniques have been developed to obtain 2D images of plasmas from the electron cyclotron emission (ECE) and soft x-ray emission signals by taking advantage of the large toroidal rotation rate on the tokamak fusion test reactor (TFTR). From the numerical examination using the sawtooth crash model, we found that the rotational tomography is effective if the crash time is longer than the two rotation periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...