Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A flowing liquid lithium first wall or divertor target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area divertor targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma–wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multilayer mirror (MLM) array, which will monitor the 13.5 nm LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence extreme ultraviolet (XUV) spectrometer (STRS) and a filterscope system to monitor Dα and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on the inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10 000 frame per second fast visible camera and an IR camera will also be available. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A simple low velocity boron micro-pellet injector has been under development for Current Drive Experiment Upgrade (CDX-U) spherical torus edge and core impurity transport measurements, and wall conditioning. The injector consists of 16 barrels on a rotatable turret. Each barrel can be loaded with boron powder particles of diameters ranging from 1 to 40 μm diameter in amounts ranging from less than 0.25 mg to more than 2 mg. A selected barrel is manually rotated into firing position using a vacuum precision rotary/linear motion feedthrough. A piezoelectric valve gas feed system triggered by CDX-U discharge timing is used to control H2 or D2 propellant gas at a cylinder pressure of 5.8×10−3 Pa (40 psi) or less. The injector barrel-to-CDX-U plasma edge distance is 0.47 m. Initial low mass injections of neutral boron beams were performed into CDX-U plasmas at a velocity of 23 m/s. Measurements were obtained with a filtered gated charge coupled device TV camera, bolometry, visible spectroscopy, and ultrasoft x-ray diagnostics. This work is in support of the present CDX-U research program and possible applications on National Spherical Torus Experiment. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 1247-1251 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 and 50 ms depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 and 50 ms depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either "overdense," operating at high density relative to the magnetic field (e.g., ωpe(very-much-greater-than)Ωce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ〉2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large kperp. In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B0∼2 kG, 〈ne〉∼1013 cm−3 and Te(approximate)10–200 eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤Te and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ωpe(very-much-greater-than)Ωce. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 755-758 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A multichannel Thomson scattering system has been developed for the CDX-U spherical torus. The system is designed for 10 eV〈Te〈400 eV, ne〉1018 m−3, which includes typical and predicted central and edge conditions in CDX-U. The system uses two laser passes to double the scattered photons from a 5 J ruby laser. The beam path is vertical through the ∼66 cm (elongated) diameter of the plasma and is movable in the major-radial direction, enabling coverage of nearly 70% of the major-radial plasma extent. Twelve channels over the vertical minor radius provide ∼2.5 cm spatial resolution. The main collecting lens, located 45 cm from the laser beamline, provides high solid angle (ΔΩ∼0.01) light collection using a 15 cm diam lens. The system makes maximum usage of an optically fast (f/1.8) compact imaging spectrometer. An intensified charge coupled device with a GaAs photocathode provides quantum efficiency of ∼20% at 6943 Å. The combination of plasma access, multiple beam passes, high-throughput spectrometer, and high quantum efficiency detector provide for very high total photon statistics in a relatively simple and inexpensive system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: To study the mechanism of anomalous transport in tokamaks requires the use of sophisticated diagnostic tools for the measurement of short-scale turbulent fluctuations. In this article, we describe an attempt at developing a technique capable of providing a comprehensive description of plasma fluctuations with k⊥ρi〈1, such as those driven by the ion temperature gradient mode in tokamaks. The proposed method is based on microwave reflectometry, and stems from a series of numerical calculations showing that the spatial structure of fluctuations near the cutoff could be obtained from the phase of reflected waves when these are collected with a wide aperture optical system forming an image of the cutoff onto an array of phase sensitive detectors. Preliminary measurements with a prototype apparatus on the Torus Experiment for Technology Oriented Research 94 (TEXTOR-94) [U. Samm, Proceedings of the 16th IEEE Symposium on Fusion Engineering, 1995 (IEEE, Piscataway, NJ, 1995), p. 470] confirm the validity of these conclusions. Technical issues in the application of the proposed technique to tokamaks are discussed in this article, and the conceptual design of an imaging reflectometer for the visualization of turbulent fluctuations in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] is described. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 480-487 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron transport has been measured in the Current-Drive Experiment Upgrade (CDX-U) (T. Jones, Ph.D. thesis, Princeton University, 1995) using two separate perturbative techniques. Sawteeth at the q=1 radius (r/a∼0.15) induced outward-propagating heat pulses, providing time-of-flight information leading to a determination of χe as a function of radius. Gas modulation at the plasma edge introduced inward-propagating cold pulses, providing a complementary time-of-flight based χe profile measurement. This work represents the first localized measurement of χe in a spherical torus. Core (r/a〈1/3) χe values from the sawtooth study are 1–2 m2/s, and from the gas modulation study are 1–6 m2/s, increasing by an order of magnitude or more outside of the core region. Furthermore, the χe profile exhibits a sharp transition near r/a=1/3. Spectral and profile analyses of the soft x-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high χe region. Comparisons are performed to several theoretical models, with measured χe(approximate)5–10× neoclassical estimates in the core. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 66 (1995), S. 2180-2182 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used "spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...