Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The 1.4–22.4 Å range of the soft X-ray spectrum includes a multitude of emission lines which are important for the diagnosis of plasmas in the 1.5–50 million degree temperature range. In particular, the hydrogen and helium-like ions of all abundant solar elements with Z 〉 7 have their primary transitions in this region and these are especially useful for solar flare and active region studies. The soft X-ray polychromator (XRP) is a high resolution experiment working in this spectral region. The XRP consists of two instruments with a common control, data handling and power system. The bent crystal spectrometer is designed for high time resolution studies in lines of Fe i-Fe xxvi and Ca xix. The flat crystal scanning spectrometer provides for 7 channel polychromatic mapping of flares and active regions in the resonance lines of O viii, Ne ix, Mg xi, Si xiii, S xv, Ca xix, and Fe xxv with 14″ spatial resolution. In its spectral scanning mode it covers essentially the entire 1.4–22.5 Å region. This paper summarizes the scientific objectives of the XRP experiment and describes the characteristics and capabilities of the two instruments. Sufficient technical information for experiment feasibility studies is included and the resources and procedures planned for the use of the XRP within the context of the Solar Maximum Mission is briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically ∼20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 R ⊙. We identify motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Bragg Crystal Spectrometer (BCS) is one of the instruments which makes up the scientific payload of the SOLAR-A mission. The spectrometer employs four bent germanium crystals, views the whole Sun and observes the resonance line complexes of H-like Fexxvi and He-like Fexxv, Caxix, and Sxv in four narrow wavelength ranges with a resolving power (λ/Δλ) of between 3000 and 6000. The spectrometer has approaching ten times better sensitivity than that of previous instruments thus permitting a time resolution of better than 1 s to be achieved. The principal aim is the measurement of the properties of the 10 to 50 million K plasma created in solar flares with special emphasis on the heating and dynamics of the plasma during the impulsive phase. This paper summarizes the scientific objectives of the BCS and describes the design, characteristics, and performance of the spectrometers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 119 (1989), S. 65-75 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Westerbork Synthesis Radio Telescope (WSRT) 6 cm radio observations of the active region HL 16864 large spot (Strong, Alissandrakis, and Kundu, 1984) are compared with X-ray data obtained from the Flat Crystal Spectrometer (FCS) onboard the Solar Maximum Mission satellite on May 25, 1980. The X-ray data confirm the presence of a temperature depression above the spot umbra in agreement with suggestions obtained from radio data analysis. Significant differences in the spatial distribution of both kinds of emission observed in the corona above this spot are attributed mainly to the strong resonant character of the cyclotron radio radiation. Some differences are also caused by both the relatively low efficiency and the low spatial resolution of the FCS. Deconvolution of X-ray images allows to see the new structures and enhances the mutual correlation between X-ray and radio pictures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 126 (1990), S. 177-184 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have analysed X-ray spectra of 13 solar flares as obtained by the Bent Crystal Spectrometer (BCS) on the Solar Maximum Mission. In particular, we have examined the observed ratio of T Fe/T Ca where T Fe and T Ca are the temperatures obtained from the Fexxv and Caxix spectra, respectively. In order to simplify the investigation we have analysed only flares which reach quasi-steady-state during the decay. It turned out that the observed ratios cannot be explained by a model consisting of a single, uniformly heated loop, with a constant or variable cross-sectional area. We propose that this problem may be solved by introducing some distribution of the heating function across the flaring loop. This model has been tested by detailed calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract All of the SOLAR-A telemetry data will be reformatted before distribution to the analysis computers and the various users. This paper gives an overview of the files which will be created and the format and organization which the files will use. The organization has been chosen to be efficient in space, to ease access to the data, and to allow for the data to be transportable to different machines. An observing log file will be created automatically using the reformatted data files as the input. It will be possible to perform searches with the observing log to list cases where instruments are in certain modes and/or seeing certain signal levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A series of VLA maps at 6 cm wavelength have been generated from observations of a solar active region (NOAA 2363) on 29 and 30 March, 1980. During the same period, X-ray spectroheliograms were acquired for this region in the lines of O viii, Ne ix, Mg xi, Si xiii, S xv, and Fe xxv, with X-rayn Polychromator (XRP) aboard the Solar Maximum Mission (SMM). Intervals of relative quiescence (i.e., when X-ray flares and centimeter wave bursts were not evident) were selected for microwave mapping. The resulting VLA maps have spatial resolution of 4″ × 4″, and generally show two or more sources whose slowly evolving substructures have spatial scales of 10″–30″. These maps were co-registered with Hα photographs (courtesy of AF/AWS SOON, Holloman and Ramey AFB) to an accuracy of ± 8″. Similarly, the X-ray spectroheliograms have been co-registered with white light photographs to about the same accuracy. Magnetograms from KPNO and MSFC have also been co-aligned, and the magnetic X-ray, and microwave features compared. In general we have found that (a) the peaks of X-ray and 6 cm emission do not coincide, although (b) the sources in the two wavelength domains tend to overlap. These facts in themselves are evidence for the existence of opacity mechanisms other than thermal bremsstrahlung. In order to quantify this assertion, we have computed differential emission measures to derive densities and temperatures. Using these and calculated force-free magnetic fields from Kitt Peak magnetograms, we present an assessment of the mechanism of gyroresonance absorption at low harmonics of the electron gyrofrequency as the source of opacity responsible for the microwave features. We conclude that large-scale currents must be present in the active region loops to account for the bright 6 cm sources far from sunspots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Yohkoh observations of an impulsive solar flare which occurred on 16 December, 1991 are presented. This flare was a GOES M2.7 class event with a simple morphology indicative of a single flaring loop. X-ray images were taken with the Hard X-ray Telescope (HXT) and soft X-ray spectra were obtained with the Bragg Crystal Spectrometer (BCS) on board the satellite. The spectrometer observations were made at high sensivity from the earliest stages of the flare, are continued throughout the rise and decay phases, and indicate extremely strong blueshifts, which account for the majority of emission in Caxix during the initial phase of the flare. The data are compared with observations from other space and ground-based instruments. A balance calculation is performed which indicates that the energy contained in non-thermal electrons is sufficient to explain the high temperature plasma which fills the loop. The cooling of this plasma by thermal conduction is independently verified in a manner which indicates that the loop filling factor is close to 100%. The production of ‘superhot’ plasma in impulsive events is shown to differ in detail from the morphology and mechanisms appropriate for more gradual events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...