Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The structure of the hexose region of the lipopolysaccharide from M206 strain, a mutant of Salmonella typhimurium having reduced virulence, was partially determined. Immunological tests indicated cross-reactions of anti-(M206) antiserum with wild-type C5 and Ra mutant strains. Data obtained on chemical composition, periodate oxidation, acetolysis, methylation and analysis by gas chromatography/mass spectrometry show that M206 type lipopolysaccharide contains the common core polysaccharide of Salmonella which was substituted in position 4 of the subterminal glucose unit by a disaccharide: d-glucosyl 1 → 3 d-galactose. This substitution is probably related to the slight virulence of M206 strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key wordsRhizobium meliloti ; Lipopolysaccharide ; 3-Deoxyheptulosaric acid ; 2-Keto-3-deoxyoctonic acid ; Core oligosaccharide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lipopolysaccharides from the Rhizobium meliloti wild-type strain 102F51, which is effective in symbiosis with alfalfa, and from the nonnodulating mutant WL113, defective in root hair adhesion, derived thereof, were isolated and comparatively analyzed. Both preparations were composed of galactose, glucose, glucuronic acid, galacturonic acid, glucosamine, 3-deoxyheptulosaric acid, and 2-keto-3-deoxyoctonic acid as the major sugar constitutents. After a modified methylation analysis (consisting of the following consecutive steps: methylation, carboxyl reduction, remethylation, mild acid hydrolysis, reduction, and trideuterio-methylation), all of the 3-deoxyheptulosaric and some of the 2-keto-3-deoxyoctonic acid residues were converted into their corresponding 3-deoxyalditol derivatives, which carried trideuteriomethyl groups at positions C-2, C-4, and C-6. Another part of the permethylated 3-deoxyoctitol was also found as 2,5,6- and 2,6,8-tri-O-trideuteriomethyl derivatives. NMR data obtained with the separated oligosaccharides and the results of methylation analysis indicated that the majority of 2-keto-3-deoxyoctonate was present in the fraction of permethylated disaccharide alditols, namely as 6-O-CD3-aGlc(1→5)3-deoxyoctitol, 6-O-CD3-βGlcNMeAcyl(1→4)3-deoxyoctitol, and as the permethylated trisaccharide alditol, αGalA(1→3)-[6-O-CD3]-β-Glc(1→5)-[4-O-CD3]-3-deoxyoctitol. The presence of trideuteriomethyl groups at C-4 of both 3-deoxyalditols and at C-6 of the glucosaminyl or glucosyl residues indicated the linkage points of the released acid-labile ketosidic substituents, such as 3-deoxyheptulosarate and 2-keto-3-deoxyoctonate, in these oligosaccharides. The main differences between the preparations from the wild-type 102F51 and its mutant strain WL 113 were found in the higher content (in strain 102F51) of the following oligosaccharides: α-glucuronosyl(1→4)2-keto-3-deoxyoctonate and α-galacturonosyl-(1→3)α-glucosyl-(1→5)2-keto-3-deoxyoctonate and in the decreased content of β-glucosaminyl(1→4)2-keto-3-deoxy-octonate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...