Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 58 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Human pathogen Pseudomonas aeruginosa uses quorum-sensing (QS) signalling systems to synchronize the production of virulence factors. There are two interrelated QS systems, las and rhl, in P. aeruginosa. In addition to this complexity, a number of transcriptional regulators were shown to have complicated interplays with las and rhl central QS components. Here, we describe a novel virulence and QS modulator (VqsM) that positively regulates the QS systems in P. aeruginosa. Mutation in vqsM resulted in much reduced production of N-acylhomoserine lactones (AHLs) and extracellular enzymes. Sequence analysis revealed that vqsM encodes a transcriptional regulator with an AraC-type helix–turn–helix DNA binding domain at the C-terminal of the peptide. Global gene expression profile analysis showed at least a total of 302 genes to be influenced, directly or indirectly, by VqsM. Among the 203 VqsM-promoted genes, 52.2% were known to be QS upregulated. Several genes encoding the key regulators implicated in QS, such as rhlR, rsaL, vqsR, mvfR, pprB and rpoS, and two AHL synthesis genes, lasI and rhlI, were suppressed in the vqsM mutant. Similar to the ‘AHL-blind’ phenotype of vqsR and pprB mutants, vqsM mutant did not respond to external addition of N-3-oxo-dodecanoyl-homoserine lactone signals. Moreover, overexpression of vqsR in vqsM mutant more or less restored the production of both AHL and virulence factors. The results demonstrate that VqsM, largely through modulation of vqsR expression, plays a vital role in regulation of QS signalling in P. aeruginosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bacterial cells sense their population density through a sophisticated cell–cell communication system and trigger expression of particular genes when the density reaches a threshold. This type of gene regulation, which controls diverse biological functions including virulence, is known as ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The response regulator PprB and its cognate sensor PprA were recently reported as a two-component regulatory system that controls membrane permeability and antibiotic sensitivity of Pseudomonas aeruginosa. We found that a Tn5 insertion mutation in pprB caused a drastic reduction in virulence factor production and cell motility. A transcriptome analysis revealed that 175 genes were regulated by PprB. Among the 113 PprB-activated genes, 85.5% are known to be activated by N-3-oxo-dodecanoyl-homoserine lactone (OdDHL) and N-butanoyl-homoserine lactone (BHL). In particular, the expression of lasI, rhlI and rhlR, which encode key components of the las and rhl quorum-sensing (QS) systems, were significantly decreased in the pprB mutant. These data suggest that PprB might regulate QS signal production. Measurement of OdDHL and BHL in cultures of the mutant sustained this hypothesis. By using various OdDHL- or BHL-responsive QS reporter systems, including lasB–lacZ, lasI–lacZ and rsaL–lacZ, we found that the mutation in pprB resulted in a large decrease in the sensitivity of P. aeruginosa to exogenous OdDHL. However, there was no difference in sensitivity to BHL. Further analysis showed that the OdDHL influx was significantly reduced in the pprB mutant. We conclude that PprB is a novel QS modulator that positively regulates N-acylhomoserine lactone production probably by affecting the OdDHL signal influx and thereby influences global expression of the QS-dependent genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 53 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Quorum sensing (QS) is a community genetic regulation mechanism that controls microbiological functions of medical, agricultural and industrial importance. Discovery of microbial QS signals and the signalling mechanisms led to identification of numerous enzymatic and non-enzymatic signal interference mechanisms that quench microbial QS signalling. Evidence is accumulating that such signal interference mechanisms can be developed as promising approaches to control microbial infection and biofilm formation. In addition, these mechanisms exist not only in microorganisms but also in the host organisms of bacterial pathogens, highlighting their potential implications in microbial ecology and in host–pathogen interactions. Investigation of QS and signal interference mechanisms might significantly broaden the scope of research in microbiology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Extracellular signals are the key components of microbial cell–cell communication systems. This report identified a diffusible signal factor (DSF), which regulates virulence in Xanthomonas campestris pv. campestris, as cis-11-methyl-2-dodecenoic acid, an α,β unsaturated fatty acid. Analysis of DSF derivatives established the double bond at the α,β positions as the most important structural feature for DSF biological activity. A range of bacterial pathogens, including several Mycobacterium species, also displayed DSF-like activity. Furthermore, DSF is structurally and functionally related to farnesoic acid (FA), which regulates morphological transition and virulence by Candida albicans, a fungal pathogen. Similar to FA, which is also an α,β unsaturated fatty acid, DSF inhibits the dimorphic transition of C. albicans at a physiologically relevant concentration. We conclude that α,β unsaturated fatty acids represent a new class of extracellular signals for bacterial and fungal cell–cell communications. As prokaryote–eukaryote interactions are ubiquitous, such cross-kingdom conservation in cell–cell communication systems might have significant ecological and economic importance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: cell morphology ; homeobox ; Malus domestica ; fertility ; fruit development ; ovule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Differential display was used to isolate genes differentially expressed early in fruit development of apple (Malus domestica Borkh.). This approach resulted in the isolation of MDH1, a homeobox gene with a homeodomain similar to that of BELL1 (BEL1), which is involved in regulation of ovule development in Arabidopsis. However, outside the homeodomain MDH1 is quite different from BEL1. In apple, MDH1 mRNA was predominantly found in flowers, expanding leaves and expanding fruit. In pre-anthesis flowers, in situ hybridization showed that MDH1 mRNA accumulated in ovules. To further investigate the function of this new homeobox gene, MDH1 was transformed into Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis plants showed dwarfing, reduced fertility and changes in carpel and fruit (silique) shape. The size and shape of the cells in the transgenic fruit was irregular. Both the transgenic phenotypes in Arabidopsis and the expression pattern of this gene in apple are consistent with the idea that MDH1 is likely to play an important role in control of plant fertility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...