Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 32 (2004), S. 329-361 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: A large extraterrestrial object striking Earth at cosmic velocity melts and vaporizes silicate materials, which can condense into highly spheroidal, sand-size particles that get deposited hundreds to thousands of kilometers from the point of impact. These particles, known as impact spherules, have been detected in great abundance in a relatively small number of thin, discrete layers ranging in age from less than a million years to 3.47 billion years. Unaltered impact spherules consist entirely of glass (microtektites) or a combination of glass and crystals grown in flight (microkrystites). Impact spherule layers form very rapidly and can be very extensive, even global in extent [e.g., the Cretaceous-Tertiary (K/T) boundary layer], so they form excellent time-stratigraphic markers. Because they are always found in a stratigraphic context, spherule layers are probably superior to terrestrial craters and related structures for assessing the environmental and biotic effects of large impacts. A record of impacts whose craters have since been obliterated, most notably those in pre-Mesozoic oceanic crust, could survive in the form of spherule layers. Secular changes in surface environments and/or the nature of the impactors striking Earth through its history could also be reflected in differences in spherules and spherule layers as a function of geologic age. In this paper, we briefly review what spherules and spherule layers are and the processes that create them, then speculate about what might be learned through wider identification of and more extensive study of impact spherule layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In a recent article in Terra Nova, Kristan-Tollmann and Tollmann (1994) suggested that the Biblical Flood can be explained by seven fragments of a comet that impacted the ocean at seven locations on Earth at 03.00h (C.E.T.) on 23 September, 9545 yr BP. We demonstrate that all the ‘geological proofs’ that allegedly support their conclusions are not supported by the available data on impact cratering. Their hypothesis is based on insufficient and ambiguous data, selective citation, and incomplete comprehension of previous research.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...