Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Keywords: Polyhydroxyalkanoates 3-hydroxybutyrate ; medium-chain-length 3-hydroxyalkanoates ; 1,3-butanediol Pseudomonas sp. A33 ; polyhydroxyalkanoate synthase polyhydroxyalkanoate depolymerase biodegradable polyesters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Pseudomonas sp. A33 and other isolates of aerobic bacteria accumulated a complex copolyester containing 3-hydroxybutyric acid (3HB) and various medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from 3-hydroxybutyric acid or from 1,3-butanediol under nitrogen-limitated culture conditions. 3HB contributed to 15.1 mol/100 mol of the constituents of the polyester depending on the strain and on the cultivation conditions. The accumulated polymer was a copolyester of 3HB and 3HAMCL rather than a blend of poly(3HB) and poly(3HAMCL) on the basis of multiple evidence. 3-Hydroxyhexadecenoic acid and 3-hydroxyhexadecanoic acid were detected as constituents of polyhydroxyalkanoates, which have hitherto not been described, by13C nuclear magnetic resonance or by gas chromatography/mass spectrometric analysis. In total, ten different constituents were detected in the polymer synthesized from 1,3-butanediol by Pseudomonas sp. A33:besides seven saturated (3HB, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydrohexadecanoate) three unsaturated (3-hydroxydodecenoate, 3-hydroxytetradecenoate and 3-hydrohexadecanoate) hydroxyalkanoic acid constituents occured. The polyhydroxyalkanoate synthase of Pseudomonas sp. A33 was cloned, and its substrate specificity was evaluated by heterologous expression in various strains of P. putida, P. oleovorans and Alcaligenes eutrophus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Keywords: Key words Polyhydroxyalkanoates 3-hydroxybutyrate ; medium-chain-length 3-hydroxyalkanoates ; 1 ; 3-butanediol ; Pseudomonas sp. A33 ; polyhydroxyalkanoate synthase ; polyhydroxyalkanoate depolymerase ; biodegradable polyesters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Pseudomonas sp. A33 and other isolates of aerobic bacteria accumulated a complex copolyester containing 3-hydroxybutyric acid (3HB) and various medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from 3-hydroxybutyric acid or from 1,3-butanediol under nitrogen-limitated culture conditions. 3HB contributed to 15.1 mol/100 mol of the constituents of the polyester depending on the strain and on the cultivation conditions. The accumulated polymer was a copolyester of 3HB and 3HAMCL rather than a blend of poly(3HB) and poly(3HAMCL) on the basis of multiple evidence. 3-Hydroxyhexadecenoic acid and 3-hydroxyhexadecanoic acid were detected as constituents of polyhydroxyalkanoates, which have hitherto not been described, by13C nuclear magnetic resonance or by gas chromatography/mass spectrometric analysis. In total, ten different constituents were detected in the polymer synthesized from 1,3-butanediol by Pseudomonas sp. A33 : besides seven saturated (3HB, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecanoate, 3-hydroxytetradecanoate and 3-hydrohexadecanoate) three unsaturated (3-hydroxydodecenoate, 3-hydroxytetradecenoate and 3-hydrohexadecanoate) hydroxyalkanoic acid constituents occurred. The polyhydroxyalkanoate synthase of Pseudomonas sp. A33 was cloned, and its substrate specificity was evaluated by heterologous expression in various strains of P. putida, P. oleovorans and Alcaligenes eutrophus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 46 (1996), S. 451-463 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Stimulated by the commercial availability of bacteriologically produced polyesters such as poly[(R)-3-hydroxybutyric acid], and encouraged by the discovery of new constituents of polyhydroxyalkanoic acids (PHA), a considerable body of knowledge on the metabolism of PHA in microorganisms has accumulated. The objective of this essay is to give an overview on the biodegradation of PHA. The following topics are discussed: (i) general considerations of PHA degradation, (ii) methods for identification and isolation of PHA-degrading microorganisms, (iii) characterization of PHA-degrading microorganisms, (iv) biochemical properties of PHA depolymerases, (v) mechanisms of PHA hydrolysis, (vi) regulation of PHA depolymerase synthesis, (vii) molecular biology of PHA depolymerases, (viii) influence of the physicochemical properties of PHA on its biodegradability, (ix) degradation of polyesters related to PHA, (x) biotechnological aspects of PHA and PHA depolymerases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 46 (1996), S. 570-579 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Bacterial degradation of sheets of selected polyhydroxyalkanoates by Comamonas sp., Pseudomonas lemoignei and Pseudomonas fluorescens GK13 is reported. Five natural polyhydroxyalkanoates were used, namely poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate, a copolymer of mainly 3-hydroxyoctanoate and minor amounts of 3-hydroxyhexanoate, and two rubber-like copolymers of saturated and unsaturated hydroxyalkanoic acids that had been modified by electron-beam-induced cross-linking. Each of these polymers was degraded by at least one bacterial strain, the rate of hydrolysis being dependent on the surface area of the polymer exposed to attack. Scanning electron microscopy of partially degraded samples showed that hydrolysis started at the surface and at physical lesions in the polymer and proceeded to the inner part of the material. No evidence for areas of non-degradable polymer was found for any of the polymers analysed, even if the polymer contained chemical cross-links.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Alcaligenes eutrophus ; Butanediol cycle ; Acetaldehyde dehydrogenase ; Acetate thiokinase ; Butanediol dehydrogenase ; Acetoin metabolism ; Alcohol dehydrogenase ; Constitutive mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eight representative strains of Alcaligenes eutrophus, two strains of Alcaligenes hydrogenophilus and three strains of Paracoccus denitrificans were examined for their ability to use different alcohols and acetoin as a carbon source for growth. A. eutrophus strains N9A, H16 and derivative strains were unable to grow on ethanol or on 2,3-butanediol. Alcohol-utilizing mutants derived from these strains, isolated in this study, can be categorized into two major groups: Type I-mutants represented by strain AS1 occurred even spontaneously and were able to grow on 2,3-butanediol (t d=2.7–6.4 h) and on ethanol (t d=15–50 h). The fermentative alcohol dehydrogenase was present on all substrates tested, indicating that this enzyme in vivo is able to oxidize 2,3-butanediol to acetoin which is a good substrate for wild type strains. Type II-mutants represented by strain AS4 utilize ethanol as a carbon source for growth (t d=3–9 h) but do not grow on butanediol. In these mutants the fermentative alcohol dehydrogenase is only present in cells cultivated under conditions of restricted oxygen supply, but a different NAD-dependent alcohol dehydrogenase is present in ethanol grown cells. Cells grown on ethanol, acetoin or 2,3-butanediol synthesized in addition two proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity and acetate thiokinase. An acylating acetaldehyde dehydrogenase (EC 1.2.1.10) was not detectable. Applying the colistin- and pin point-technique for mutant selection to strain AS1, mutants, which lack the fermentative alcohol dehydrogenase even if cultivated under conditions of restricted oxygen supply, were isolated; the growth pattern served as a readily identifiable phenotypic marker for the presence or absence of this enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 76 (1989), S. 536-537 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-8900
    Keywords: PHB ; depolymerase ; bacterial ; enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract As a complement to previous studies of the enzymatic degradation of folded chain lamellar single crystals of polyhydroxyalkanoates, single crystals of a number of polyhydroxyalkanoates were partially degraded with depolymerases from Pseudomonas lemoignei and examined by transmission electron microscopy. Single crystals of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate), bacterial poly(3-hydroxyvalerate), and synthetic poly(3-hydroxybutyrate) with 88% isotactic diads were degraded using purified extracellular PHA-depolymerases from P. lemoignei: PHB-depolymerase A, PHB-depolymerase B, and depolymerases from recombinant E. coli: PHB-depolymerase PhaZ4 (PHB-depolymerase E), PHB-depolymerase PhaZl (PHB-depolymerase C), and PHB-depolymerase PhaZ5 (PHB-depolymerase A). In contrast to previous results with single crystals of bacterial PHB, the predominant effect observed with all crystals was a significant narrowing of the lamellae. This suggests an edge attack mechanism which because of lateral disorder of the crystals leads to a narrowing of the crystalline lamellae as opposed to the splintering effect previously observed. The model suggested for the degradation of single crystals of bacterial PHB by PHB-depolymerases is refined to include the effects of lateral disorder caused by the introduction of valerate or repeat units of opposite stereochemistry into the single crystal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5117
    Keywords: deep sea ; degradation ; hydrostatic pressure ; marine fungi ; marine pollution ; poly-β-hydroxy-butyric acid (PHB)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Little is known about marine filamentous fungi and yeasts, almost nothing about their life and metabolism under deep sea conditions. Data on growth and metabolic activity give insight into the role of organisms in the marine habitat. Degradation studies on pollutants, such as polymeric thermoplasts, provide information about the self-cleaning capacity of a habitat. Therefore, recently isolated fungal strains from the deep sea and our newly developed methods and apparatus for investigation of fungi under simulated deep sea conditions were used to study fungal growth and degradation of a commercially produced thermoplastic polymer (poly-β-hydroxybutyric acid = PHB). Two deep sea isolates, a filamentous fungus (Aspergillus ustus) and one yeast (Rhodosporidium sphaerocarpum), and for comparison, two marine surface yeast isolates (Candida guilliermondii, Debaryomyces hansenii) and one terrestrial isolate of Aspergillus ustus were investigated. Growth (colony-forming units, dry weight), physiological parameters (oxygen saturation of the hydraulic fluid as oxygen reservoir, pH and consumption of total carbohydrate) and PHB degradation (clearing test: clearing of PHB-turbid agar medium; spectrophotometric test: PHB depolymerase activity) were followed after incubation in high-pressure autoclaves in artificial seawater medium at 27 °C and pressures of 0.1 MPa (= atmospheric pressure), 5 MPa, 10 MPa, 20 MPa, 30 MPa, 45 or 50 MPa and 100 MPa (∼ 10000 m water depth) for a maximum of 21 days (yeasts) and 28 days (filamentous fungi), respectively. Irrespective of the marine or terrestrial origin of the isolates, growth decreased with increasing pressure with a limit between 30 MPa and 50 MPa for filamentous fungi and yeasts. Metabolic activity (consumption of medium components) started to decrease from 20 MPa, ceasing at growth-limiting pressures. Under atmospheric conditions, all strains degraded PHB in solid medium, in liquid medium degradation was less and decreased further and/or was delayed with increasing hydrostatic pressure; beyond 30 MPa, no PHB degradation could be observed. In summary, it could be shown that growth, metabolism and degradation of pollutants such as PHB by marine fungal isolates was impaired with increasing pressure, showing one aspect of the reduced self-cleaning capacity of the deep sea habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...