Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 1708-1712 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electrical activation and carrier mobility of InP implanted with the group-IV elements at MeV energies has been studied as a function of implanted atom (C, Si, Ge, and Sn) and rapid thermal annealing temperature (500–800 °C). In addition, electrical results have been correlated with photoluminescence (PL) measurements. In general, for a dose of 5×1014/cm2 and a projected range of ∼1.0 μm, the electrical activation and carrier mobility increase then saturate with increasing annealing temperature. Similarily, PL emission intensity increases with increasing annealing temperature. At a temperature of 750 °C, the electrically active fraction increases from C, Ge, Si, to Sn, respectively, while carrier mobility and PL emission intensity decreases with increasing atomic mass. Thus, Sn exhibits the highest electrical activation yet lowest carrier mobility with little optically observable, postanneal lattice recovery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The relationship between electrical activity, dopant solubility, and diffusivity was investigated as a function of the substrate temperature during implantation of Te, Cd, and Sn ions into GaAs. Implant doses of these species in the range 5×1012–5×1015 cm−2 were performed in the temperature range −196 to 400 °C, followed by either transient (950 °C, 5 s) or furnace (450–900 °C, 20 min) annealing. The redistribution after such annealing was found to depend on the implant temperature, and was always greatest for Cd followed by Sn and Te. The degree of electrical activation was in the same order, but there was essentially no correlation of electrical activity with dopant solubility. Te, for example, showed soluble fractions of ∼90% for a dose of 1015 cm−2 after annealing at 850 °C or higher, regardless of the initial implant temperature. By sharp contrast, the electrically active fraction under these conditions was in the range 0.8%–3.4%. There was also no apparent correlation of the degree of electrical activity with the presence of defects visible in transmission electron microscopy. The energy required to activate the implanted ions fell broadly into two categories: "low'' values in the range ∼0.4–0.8 eV (which included Cd implanted or annealed under any condition, and elevated temperature implants of Sn and Te), and "high'' values in the range 1.7–1.9 eV [which included implants of Sn and Te performed at −196 °C, or high dose (1015 cm−2) room-temperature implants of these species].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 6567-6569 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin amorphous GaAs layers on (100)-oriented substrates, generated by Si+ ion bombardment at 77 K, have been observed to recrystallize epitaxially during 1.5-MeV Ne+ bombardment in the temperature range 75–135 °C. Crystallization proceeds linearly with increasing ion fluence, except in the near-surface region, and the process is characterized by an activation energy of 0.16 eV, which is an order of magnitude smaller than that obtained for conventional thermal annealing at much higher temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...