Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Rice ; NADH dehydrogenase subunit 3 ; Mitochondrial DNA ; Ribosomal protein S12 ; tRNASer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nucleotide sequences of the tRNASer (trnS), pseudo-tRNA, NADH dehydrogenase subunit 3 (nad3), and ribosomal protein S12 (rps12) genes from rice mitochondrial DNA (mtDNA) were determined. Both trnS and nad3 were confirmed to be single copy genes by Southern blot analysis. The nad3 and rps12 genes were arranged in tandem, and the two were co-transcribed. The order of the above four genes in rice mtDNA differed from the linear order observed for the wheat and maize genes. In rice mitochondria, the trnS and pseudo-tRNA genes were found upstream of the cytochrome c oxidase subunit I gene, instead of the nad3 and rps12 genes as observed in maize and wheat. Additionally, while the rice nad3 and rps12 genes remain paired, they too are in a different sequence environment from the wheat and maize genes. The apparent split of the two pairs of genes indicates the occurrence of a mitochondrial intramolecular recombinational event. Another peculiarity is that the sequence upstream of the translational initiation codon of the rice nad3 gene is different from that of the wheat and maize versions. The ATG initiation codon of wheat and maize nad3 is replaced by TTG in the rice nad3. A subsequent deduction of the amino acid sequence, accompanied by a primer extension analysis, indicates that the predicted rice NAD3 protein has an additional 37 amino acid residues at its N-terminus compared to the wheat and maize NAD3 proteins. cDNA sequence analysis showed no introns or the occurrence of RNA editing at the newly replaced TTG codon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: RNA editing ; Tomato mitochondria ; coxl gene ; Initiation codon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nucleotide-sequence analysis showed that the gene for cytochrome oxidase subunit I (coxl) from tomato mitochondrial DNA has an ACG codon at a conserved position corresponding to an ATG initiation codon in other higher-plant coxl genes. cDNA-sequence analysis of the coxl transcripts showed that 15 positions in the genomic DNA were converted from C to U in the transcripts by RNA editing. One of the editing events is observed at the indicated ACG codon, producing an ATG initiation codon. The nucleotide sequences of 37 cDNA clones showed that the initiation codon was created in 32 out of the 37 clones, while nucleotide positions 254 and 11 were edited in 37 and 34 of the 37 clones examined, respectively, suggesting that creation of the initiation codon is a post-transcriptional event. The BamHI site at nucleotide position 757–762 within the coxI genomic DNA was altered in all 97 cDNA clones examined, demonstrating that RNA editing at this site in the transcripts is very common. RNA editing takes place to a lesser extent at the initiation codon, compared with editing at internal position 254. This indicates that editing is either a random process or that it involves a mechanism favoring less RNA editing in the initiation codon than in internal sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: motifs ; organelle ; polarity ; RNA editing ; specificity factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The RNA editing processes in chloroplasts and mitochondria of higher plants show several similarities which are suggestive of common components and/or biochemical steps between the two plant organelles. The existence of various promiscuous DNA fragments of chloroplast origin in plant mitochondrial genomes allowed us to test the possibility that chloroplast sequences are also edited in mitochondria. AnrpoB fragment transferred from chloroplasts to mitochondria in rice was chosen as it contains several editing sites, two of which match sequence motifs surrounding even non-homologous editing sites in both chloroplast and mitochondrial transcripts. Rice chloroplast and mitochondrialrpoB DNA and cDNA sequences were selectively amplified and the editing status of the cDNA sequences was determined. Three of the four potentialrpoB editing sites previously detected in maize were found to be edited in the rice chloroplastrpoB transcript, whereas the fourth was found to remain unedited. In mitochondria, however, all four editing sites remain unmodified at the cDNA level. This indicates that the editing processes of higher plant mitochondria and chloroplasts are not identical and that organelle-specific factors are required for eliciting the respective editing events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: group-II intron ; mitochondria ; ribosomal protein ; rice ; RNA editing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mitochondrial ribosomal protein L2 gene (rpl2) is coded by two exons of 840 and 669 bp separated by an intron sequence of 1481 bp in the rice mitochondrial genome. The rpl2 gene is located three nucleotides upstream of the ribosomal protein S19 gene (rps19) and both genes are co-transcribed. cDNA sequence analysis indentified splicing of the intron sequence from the rpl2 mRNA as well as RNA editing events. The deduced secondary structure of the rpl2 intron sequence shows the characteristic features of a group-II intron. A single RNA editing site is identified in rpl2 and six editing sites in rps19 transcripts. In addition, one editing site is observed in the 3 nucleotide intergenic region. Analysis of individual cDNA clones showed a different extent of RNA editing. The rice rpl2 intron is located at a different site and shows no significant nucleotide sequence similarity with the rpl2 intron of liverwort. However, 60% nucleotide sequence identity is observed between the rice rpl2 intron and the Oenothera nad5 intron in a 234 nucleotide region. The mitochondrial rpl2 sequence is absent from the pea mitochondrial genome and we consequently propose that the mitochondrial RPL2 protein is encoded by a nuclear gene in pea.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 224 (1990), S. 10-16 
    ISSN: 1617-4623
    Keywords: Rice ; ATPase subunit 6 ; Cytoplasmic male-sterility ; Chimeric gene ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three ATPase subunit 6 (atp6) genes of rice mitochondria were isolated, one from normal and two from cms-Bo male-sterile cytoplasms, in order to determine whether the extra atp6 gene in cms-Bo rice plays a role in cytoplasmic male-sterility (CMS). The nucleotide sequences of all three genes were determined and analysis showed a chimeric atp6 gene (urf-rmc) as well as a normal atp6 gene in cms-Bo cytoplasm, but only the normal atp6 gene in normal cytoplasm. The urf-rmc gene is completely homologous to the normal atp6 gene from at least position − 426 in the 5′ flanking region to position + 511 downstream from the initiation codon ATG; however, the following downstream sequence shows no homology with the normal rice atp6 gene, or any other reported sequence. Introduction of the restorer of fertility gene altered transcription of the urf-rmc gene but not the atp6 gene, indicating participation of the chimeric gene in the expression of CMS. Southern blot analysis showed that the urf-rmc gene was generated by an intramolecular recombination event in mitochondrial DNA, and the homologous recombination point between the atp6 gene and the opposite ancestral sequence was identified as 5′-TTCCCTC-3′.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of plant research 106 (1993), S. 89-99 
    ISSN: 1618-0860
    Keywords: Gene organization ; Gene transfer ; Mitochondrial mutants ; Mitochondrion ; Transcript modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recent topics regarding higher plant mitochondria are briefly reviewed, such as gene organization, the genes associated with mutants, and the maturation of transcripts. The estimated genome size of higher plant mitochondrial DNA varies from about 200 kb to 2,500 kb. Most of the mitochondrial genomes are organized as complex multiple circular molecules, generated from recombinations between repeated sequences. Several protein-encoding genes unique to plant mitochondria are identified but gene contents are not identical among the plant species. Gene transfer of cytochrome oxidase subunit II, generally mitochondrially encoded gene, is found to move from mitochondrion to nucleus via RNA molecules and the event is limited in a single genus of legume. Genes associated with mitochondrial mutants, CMS-T and NCS3, are isolated and characterized in detail. Plant mitochondria have two types of notable post-transcriptional RNA modifications. One is RNA editing that alters a cytidine residue in DNA to a uridine residue in RNA, and results in an evolutionally more conservative polypeptide. The other istrans-splicing of transcripts of NADH dehydrogenase subunit 1 and 5 genes, that fuses the physically scattered mRNAs and makes a mature mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...