Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1572-9699
    Schlagwort(e): Acinetobacter sp. ; biological phosphorus removal ; glycogen ; metabolic modelling ; polyphosphate ; polyhydroxybutyrate
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The removal of phosphorus from wastewater is already widely applied. In many cases use is made of micro organisms capable of accumulating phosphorus as polyphosphate inside the cell. The main characteristic providing the competitive advantage to these polyphosphate accumulating bacteria is the capability to use polyphosphate, in the absence of external electron acceptors, as energy source for the uptake and storage of acetic acid in the form of polyhydroxybutyrate (PHB). The reduction equivalents for the formation of PHB are derived from the conversion of glycogen to PHB. Despite the widespread use and study of enhanced biological phosphorus removal no pure culture, having the above mentioned characteristics, has been isolated yet. All ecophysiological studies on these type of cultures have therefore been performed by enrichment cultures. This paper reviews the research on these type of organisms, and shows that it is possible to understand a complex microbial process on a metabolic level, both stoichiometrically and kinetically, without the availability of a pure culture.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 685-695 
    ISSN: 0006-3592
    Schlagwort(e): phosphorus removal ; denitrifying dephosphatation ; stoichiometry ; metabolic model ; sequencing batch reactor ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A metabolic model for biological phosphorus removal under denitrifying conditions has been established. The model is based on previous work with aerobic phosphorus removal. The form of the kinetic equations used is the same as for the aerobic model. The main difference is the value of P/NADH2 ratio in the electron transport phosphorylation with nitrate (δN). This value was determined independently from batch tests with an enriched culture of denitrifying phosphorus-removing bacteria. The measured δN was approximately 1.0 mol ATP/mol NADH2. This indicates that the energy production efficiency with nitrate compared to oxygen is approximately 40% lower. These batch tests were also used to identify a proper set of kinetic parameters. The obtained model was subsequently applied for the simulation of cyclic behavior in an anaerobic-anoxic sequencing batch reactor at different biomass retention times. The simulation results showed that the metabolic model can be used successfully for the denitrifying dephosphatation process. The obtained kinetic parameters for denitrifying enrichment cultures, however, deviated from those obtained for the aerobic enrichment cultures. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 434-450 
    ISSN: 0006-3592
    Schlagwort(e): biological phosphorus removal ; anaerobic-denitrifying process ; anaerobic-aerobic process ; denitrification ; activated sludge ; metabolic model ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: In this work, an integrated metabolic model for biological phosphorus removal is presented. Using a previously proposed mathematical model it was shown to be possible to describe the two known biological phosphorus removal processes, under aerobic and denitrifying conditions, with the same biochemical reactions, where only the difference in electron acceptor (oxygen and nitrate) is taken into account. Though, apart from the ATP/NADH ratio, the stoichiometry in those models is identical, different kinetic parameters were found. Therefore, a new kinetic structure is proposed that adequately describes phosphorus removal under denitrifying and aerobic conditions with the same kinetic equations and parameters. The ATP/NADH ratio (δ) is the only model parameter that is different for aerobic and denitrifying growth. With the new model, simulations of anaerobic/aerobic and anaerobic/denitrifying sequencing batch reactors (A2 SBR and A/O SBR) were made for verification of the model. Not only short-term behavior, but also steady state, was simulated. The results showed very good agreement between model predictions and experimental results for a wide range of dynamic conditions and sludge retention times. Sensitivity analysis shows the influence of the model parameters and the feed substrate concentrations on both systems. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 434-450, 1997.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...