Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Islets of Langerhans ; glucose ; tolbutamide ; [Ca2+]i-oscillations ; insulin secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Plasma insulin levels in healthy subjects oscillate and non-insulin-dependent diabetic patients display an irregular pattern of such oscillations. Since an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) in the pancreatic beta cell is the major stimulus for insulin release, this study was undertaken to investigate the dynamics of electrical activity, [Ca2+]i-changes and insulin release, in stimulated islets from subjects of varying glucose tolerance. In four patients it was possible to investigate more than one of these three parameters. Stimulation of pancreatic islets with glucose and tolbutamide sometimes resulted in the appearance of oscillations in [Ca2+]i, lasting 2–3 min. Such oscillations were observed even in some islets from patients with impaired glucose tolerance. In one islet from a diabetic patient there was no response to glucose, whereas that islet displayed [Ca2+]i-oscillations in response to tolbutamide, suggesting that sulphonylurea treatment can mimic the complex pattern of glucose-induced [Ca2+]i-oscillations. We also, for the first time, made patch-clamp recordings of membrane currents in beta-cells in situ in the islet. Stimulation with glucose and tolbutamide resulted in depolarization and appearance of action potentials. The islet preparations responded to stimulation with a number of different secretagogues with release of insulin. The present study shows that human islets can respond to stimulation with glucose and sulphonylurea with oscillations in [Ca2+]i, which is the signal probably underlying the oscillations in plasma insulin levels observed in healthy subjects. Interestingly, even subjects with impaired glucose tolerance had islets that responded with oscillations in [Ca2+]i upon glucose stimulation, although it is not known to what extent the response of these islets was representative of most islets in these patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Key words Islets of Langerhans ; glucose ; tolbutamide ; [Ca2 + ]i-oscillations ; insulin secretion.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Plasma insulin levels in healthy subjects oscillate and non-insulin-dependent diabetic patients display an irregular pattern of such oscillations. Since an increase in cytoplasmic free Ca2 + concentration ([Ca2 + ]i) in the pancreatic beta cell is the major stimulus for insulin release, this study was undertaken to investigate the dynamics of electrical activity, [Ca2 + ]i-changes and insulin release, in stimulated islets from subjects of varying glucose tolerance. In four patients it was possible to investigate more than one of these three parameters. Stimulation of pancreatic islets with glucose and tolbutamide sometimes resulted in the appearance of oscillations in [Ca2 + ]i, lasting 2–3 min. Such oscillations were observed even in some islets from patients with impaired glucose tolerance. In one islet from a diabetic patient there was no response to glucose, whereas that islet displayed [Ca2 + ]i-oscillations in response to tolbutamide, suggesting that sulphonylurea treatment can mimic the complex pattern of glucose-induced [Ca2 + ]i-oscillations. We also, for the first time, made patch-clamp recordings of membrane currents in beta-cells in situ in the islet. Stimulation with glucose and tolbutamide resulted in depolarization and appearance of action potentials. The islet preparations responded to stimulation with a number of different secretagogues with release of insulin. The present study shows that human islets can respond to stimulation with glucose and sulphonylurea with oscillations in [Ca2 + ]i, which is the signal probably underlying the oscillations in plasma insulin levels observed in healthy subjects. Interestingly, even subjects with impaired glucose tolerance had islets that responded with oscillations in [Ca2 + ]i upon glucose stimulation, although it is not known to what extent the response of these islets was representative of most islets in these patients. [Diabetologia (1994) 37: 1121–1131]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Glutamate uptake ; Glutamate analogues ; Sodium dependency ; Glutamate release ; Cultured astrocytes ; Cultured neurons ; Brain regions ; Granule cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The uptake of L-glutamate was studied in astrocytes cultured from different brain areas of newborn rats as well as in two different cultures of neurons obtained from mouse brain. Both astrocytes and neurons exhibited high-affinity glutamate uptake with Km values ranging from 34 [μM to 82 μM. Vmax values for astrocytes cultured from the different brain regions were: prefrontal cortex: 13.9; occipital cortex: 11.4; neostriatum: 27.3 and cerebellum: 5.8 nmol · min−1 · mg−1 cell protein. For cerebellar granule cells and cerebral cortical neurons the Vmax values were found to be 10.2 and 5.9 nmol · min−1 · mg−1 cell protein, respectively. The effect on L-glutamate uptake in astrocytes cultured from prefrontal cortex and in cultured cerebellar granule cells of a series of compounds structurally related to glutamate was studied, and detailed kinetic analyses of the inhibitory patterns of three potent inhibitors were performed. L-aspartate and L-aspartate-β-hydroxamate were found to be competitive inhibitors of L-glutamate uptake in both cell types with Ki values for astrocytes of 60 μM and 91 [μM, respectively, and for granule cells of 48 μM and 72 μM, respectively. D-aspartate was found to be a mixed-type noncompetitive inhibitor of L-glutamate uptake in astrocytes (K;: 106 μM), but in granule cells this compound showed simple competitive inhibition with a Ki of 49 μM. Sodium dependency of L-glutamate uptake in both cell types was studied at a series of Lglutamate and Na+ concentrations. It was found that the uptake of glutamate in astrocytes is coupled with one Na+ ion in contrast to two Na+ ions in granule cells. The Km value for sodium was found to be 15 mM in both cell types. It was shown that release of exogenously supplied [3H] -L-glutamate from cerebel lar granule cells could be stimulated in a Ca2+-dependent manner by high concentrations (55 mM) of K+. In contrast to this no K+-induced release of glutamate could be demonstrated in cultured astrocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The transport kinetics of γ-aminobutyric acid (GABA), taurine, and β-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (KmGABA= 24.9 ± 1.7 μM; KmTau= 20.0 ± 3.3 μM; Kmβ-Ala= 73.0 ± 3.6 μM) and astrocytes (KmGABA= 31.4 ± 2.9 μM, KmTau= 24.7 ± 1.3 μM; Kmβ-Ala= 70.8 ± 3.6 μM). The maximal uptake rates (Vmax) determined were such that, in neurons, VmaxGABA〉 Vmaxβ-Ala=VmaxTau, whereas in astrocytes, Vmaxβ-Ala 〉 VmaxTau=VmaxGABA. Taurine was found to inhibit β-alanine uptake into neurons and astro cytes in a competitive manner, with Ki values of 217 μM in neurons and 24 μM in astrocytes. β-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 μM in neurons and 71 μM in astrocytes. However, β-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of β-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons. Taken together, the similarity between the results obtained for β-alanine and taurine uptake in addition to their competitive mode of mutual inhibition strongly suggest that these compounds share a common carrier in neurons and astrocytes and that neither amino acid in either cell type is transported appreciably, if at all, by the GABA carrier, and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effects of N-(4,4-diphenyl-3-butenyl) derivatives of nipecotic acid (SKF-89976-A and SKF-100844-A) and guvacine (SKF-100330-A) on neuronal and astroglial γ-aminobutyric acid (GABA) uptake were investigated. In addition, the uptake of SKF-89976-A was studied using the tritiated compound. All of the compounds were found to be competitive inhibitors of GABA uptake irrespective of the cell type, with Ki values similar to or lower than those of the parent amino acids. Moreover, none of the compounds exhibited selectivity with regard to inhibition of neuronal and glial GABA uptake. In spite of the competitive nature of SKF-89976-A, the compound was not transported by the GABA carriers in the two cell types, because no saturable uptake could be demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis-4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex “prisms” were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent Km values, Ki values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis-4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 34 (1980), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: (RS)-Nipecotic acid is taken up into cultured astrocytes by a saturable high-affinity transport system with a Km, of 28.8 ± 2.8 μM and a Vmax of 0.294 ± 0.022 nmol × min−1× [mg cell protein]−1. The uptake which represents a net inward transport was sodium-dependent, requiring translocation of one sodium ion for each molecule of nipecotic acid taken up. The most potent inhibitors of GABA uptake into astrocytes (GABA, (R)-nipecotic acid, (3RS,4SR)-4-hydroxynipecotic acid, and guvacine) were shown to be potent inhibitors of nipecotic acid uptake (IC50) 20, 25, 25, and 50 μm respectively), GABA being a competitive inhibitor. (S)-2,4-Diaminobutyric acid was a more efficient inhibitor than β-alanine of glial uptake of (RS)-nipecotic acid. It is concluded that astroglial uptake of (RS)-nipecotic acid and GABA is mediated by the same transport system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Experimental Cell Research 207 (1993), S. 115-121 
    ISSN: 0014-4827
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0014-4827
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0196-9781
    Keywords: Immunohistochemistry ; Mammals ; Peptide histidine isoleucine (PHI) ; Vasoactive intestinal peptide (VIP)
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...