Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 7351-7361 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A nonempirical, containing no adjustable parameters, theoretical model is suggested for calculations of state-specific dissociation rates in diatomic gases. Effects of molecular rotation and three dimensionality of collisions are consistently accounted for. The model is based upon a modified forced harmonic oscillator (FHO) scaling, with anharmonic frequency correction and energy symmetrization. The FHO scaling allows close-coupled calculations of multiquantum transitions between vibrational states, and it requires evaluation of collisional energy transfer to classical oscillator. Three-dimensional classical energy transfer models in both free-rotation and impulsive (sudden) approximations were used in conjunction with the FHO quantum scaling. The new theory describes the role of various degrees of freedom in dissociation both qualitatively and quantitatively. One of the predictions is that at low and moderate temperatures, dissociation is strongly preferential, with state-specific rates sharply increasing with vibrational energy; however, at high temperatures, the rate dependence on vibrational energy becomes less steep, turning into a virtually nonpreferential. Calculated thermal (equilibrium) and nonequilibrium dissociation rates of oxygen and nitrogen show a very good agreement with shock-tube experimental data taken from the literature. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2693-2705 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Spark-generated shock waves were studied in glow discharges in argon and argon–nitrogen mixtures. Ultraviolet filtered Rayleigh scattering was used to measure radial profiles of gas temperature, and the laser schlieren method was used to measure shock arrival times and axial density gradients. Time accurate, inviscid, axisymmetric fluid dynamics computations were run and results compared with the experiments. Our simulation show that changes in shock structure and velocity in weakly ionized gases are explained by classical gas dynamics, with the critical role of thermal and multi-dimensional effects (transverse gradients, shock curvature, etc.). A direct proof of the thermal mechanism was obtained by pulsing the discharge. With a sub-millisecond delay between starting the discharge and shock launch, plasma parameters reach their steady-state values, but the temperature is still low, laser schlieren signals are virtually identical to those without the discharge, differing dramatically from the signals in discharges with fully established temperature profiles. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8299-8309 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In many cases, the widely used matrix inversion approach to describe the spectral interference in collisionally perturbed molecular spectra is not feasible if the particular molecular interactions do not allow the sudden impact approximation (infinitely short collision duration). To overcome this problem, we present a time domain model that describes collisional broadening and narrowing phenomena without requiring the sudden approximation. The key element of the model is a Monte Carlo type sampling process to quantify the temporal autocorrelation of the molecular dipole moment. The spectrum is then obtained numerically via fast Fourier transform. The model does not require a frequency-dependent relaxation operator; the finite collision duration is simply an adjustable parameter in the time domain process. Our approach, which is generally applicable to any set of transition lines, is derived from concepts of both conventional quantum-mechanical and semiclassical theory of line interference. Coherent transfer effects from rotationally inelastic collisions are described as randomly occurring events which affect frequency, amplitude, and phase of the sampled oscillation. Effects of vibrational dephasing are included as well. To demonstrate its feasibility, we apply the model here to the 2.7 μ absorption spectrum of carbon dioxide diluted in high density air (ρ=43–485 amagat, T=297–754 K). The successful modeling of the experimental data, especially the full collapse of P and R branches at ultrahigh densities, accounts for interbranch mixing and for incoherent effects. The calculations make extensive use of the new Hitran (HITEMP) molecular database. Results include revised estimates for the collision duration of CO2 with nitrogen and oxygen at room temperature. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...