Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract In batch and continuous fermentations, the reduction in corrosion of SAE 1018 mild steel and 304 stainless steel caused by inhibition of the reference sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris by a protective, antimicrobial-producing Bacillus brevis biofilm was investigated. The presence of D. vulgaris produced a thick black precipitate on mild steel and a higher corrosion rate in batch cultures than that seen in a mono-culture of non-antimicrobial-producing Pseudomonas fragi K upon the addition of SRB to the aerobic P. fragi K biofilm. In continuous reactors, the polarization resistance R p decreased for stainless steel and increased for mild steel upon the addition of SRB to a P. fragi K biofilm. Addition of either 200 μg/ml ampicillin, chloramphenicol, or ammonium molybdate to batch and continuous reactors after SRB had colonized the metal was ineffective in killing SRB, as inferred from the lack of change in both R p and the impedance spectra. However, when ampicillin was added prior to SRB colonization, the growth of SRB was completely inhibited on stainless steel in continuous reactors. Prior addition of ampicillin was only able to delay the growth of SRB on mild steel in continuous reactors. External addition of the purified peptide antimicrobial agent gramicidin S prior to the addition of SRB also inhibited the growth of SRB on stainless steel in continuous reactors, and the SRB were also inhibited on stainless steel in both batch and continuous reactors by producing gramicidin S in situ in a protective biofilm when the gramicidin-S-overproducing strain Bacillus brevis 18 was used.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 22 (1999), S. 167-175 
    ISSN: 1476-5535
    Keywords: Keywords: engineered biofilms; biocorrosion; sulfate-reducing bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To identify novel, less-toxic compounds capable of inhibiting sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris and Desulfovibrio gigas in suspension cultures were exposed to several antimicrobial peptides. The bacterial peptide antimicrobials gramicidin S, gramicidin D, and polymyxin B as well as the cationic peptides indolicidin and bactenecin from bovine neutrophils decreased the viability of both SRB by 90% after a 1-h exposure at concentrations of 25–100 μg ml−1. To reduce corrosion by inhibiting SRB in biofilms, the genes for indolicidin and bactenecin were expressed in Bacillus subtilisBE1500 and B. subtilis WB600 under the control of the constitutive alkaline protease (apr) promoter, and the antimicrobials were secreted into the culture medium using the apr signal sequence. Bactenecin was also synthesized and expressed as a fusion to the pro-region of barnase from Bacillus amyloliquefaciens. Concentrated culture supernatants of B. subtilis BE1500 expressing bactenecin at 3 μg ml−1 decreased the viability of Escherichia coli BK6 by 90% and the reference SRB D. vulgaris by 83% in suspension cultures. B. subtilis BE1500 and B. subtilis WB600 expressing bactenecin in biofilms also inhibited the SRB-induced corrosion of 304 stainless steel six to 12-fold in continuous reactors as evidenced by the lack of change in the impedance spectra (resistance polarization) upon addition of SRB and by the reduction in hydrogen sulfide and iron sulfide in batch fermentations with mild steel. A 36-fold decrease in the population of D. vulgaris in a B. subtilis BE1500 biofilm expressing bactenecin was also observed. This is the first report of an antimicrobial produced in a biofilm for in vivo applications and represents the first application of a beneficial, genetically-engineered biofilm for combating corrosion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 52 (1999), S. 787-790 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...