Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 2597-2599 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments to study negative ion densities have been carried out using the photodetachment effect in a rf plasma in CF4. Electrons are detached from the negative ions under the influence of the pulse of a Nd:YAG laser. The induced increase of the electron density is measured as a function of time using the shift of the resonance frequency of a microwave cavity containing the plasma. The negative ion density [F−] is found to be about (4±1)×1015 m−3, a factor 4±1 higher than the electron density.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 4156-4163 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results from emission spectroscopy measurements on an Ar/SiH4 plasma jet which is used for fast deposition of amorphous hydrogenated silicon are presented. The jet is produced by allowing a thermal cascaded arc plasma in argon (I=60 A, V=80 V, Ar flow=60 scc/s and pressure 4 × 104 Pa) to expand to a low pressure (100 Pa) background. In the resulting plasma SiH4 is injected in front of the stationary shock front. Assuming a partial local thermal equilibrium situation for higher excited atomic levels, emission spectroscopy methods yield electron densities (∼ 1018 m−3), electron temperatures (∼5000 K) as well as concentrations of H+, Si+, and Ar+ particles. The emission spectrum of the SiH radical, the A 2Δ–X 2Π electronic transition, is observed. Numerical simulations of this spectrum are performed, resulting in upper limits for the rotational and vibrational temperatures of 4000 and 5600 K, respectively. The results can be understood assuming that, in the expansion, charge exchange and dissociative recombination are dominant processes in the formation of species in excited states, notably Si+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...