Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Amyotrophic lateral sclerosis ; Neuropathology ; Posterior column involvement ; Genetics ; Superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Several missense mutations within exons 1, 2, 4 and 5 of the gene for Cu/Zn-binding superoxide dismutase (SOD1) have been discovered to be involved in the development of chromosome 21q-linked familial amyotrophic lateral sclerosis (FALS). We describe here an autopsied patient with FALS, in whom we have recently identified a novel missense mutation in exon 1 of the SOD1 gene. The neuropathological findings were compatible with those described previously in patients with FALS with posterior column involvement. This suggests that mutations of the SOD1 gene may be responsible for this form of FALS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words: Amyotrophic lateral sclerosis ; Neuropathology ; Posterior column involvement ; Genetics ; Superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Several missense mutations within exons 1, 2, 4 and 5 of the gene for Cu/Zn-binding superoxide dismutase (SOD1) have been discovered to be involved in the development of chromosome 21q-linked familial amyotrophic lateral sclerosis (FALS). We describe here an autopsied patient with FALS, in whom we have recently identified a novel missense mutation in exon 1 of the SOD1 gene. The neuropathological findings were compatible with those described previously in patients with FALS with posterior column involvement. This suggests that mutations of the SOD1 gene may be responsible for this form of FALS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 397 (1999), S. 72-76 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. The ionotropic glutamate receptors are classified into two groups, NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors. The AMPA ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The N-linked glycosylation of the α2 subunit of the mouse α-amino-3-hydroxy-5-methylisoxazole-4-propionate(AMPA)-selective glutamate receptor (GluR) channel was characterized. The receptor subunit protein has five putative N-glycosylation sites. The recombinant receptor proteins were identified by [35S]methionine/[35S]cysteine metabolic labeling, western blot analysis, immunocytochemical detection, and [3H]AMPA binding experiments when expressed in insect Spodoptera frugiperda cells using a baculovirus system. The effect of tunicamycin on the metabolic labeling and immunoblots suggested that the two products, a major protein species of ∼102 kDa and a minor species of ∼98 kDa, correspond to glycosylated and unglycosylated forms, respectively, which was also supported by the enzymic deglycosylation experiments. Immunofluorescence staining of tunicamycin-treated cells expressing only the unglycosylated form differed little from that of tunicamycin-nontreated cells expressing both glycosylated and unglycosylated forms. The lack of AMPA-binding activity of the unglycosylated form expressed in the presence of tunicamycin suggested that N-glycosylation is required, directly or indirectly, for functional expression in insect cells for ligand binding. These results demonstrate that occupancy of at least one N-glycosylation site is required for the formation and maintenance of the GluRα2 subunit protein in an active conformation for ligand binding. Possible roles of N-glycosylation of GluRα2 subunit protein are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptors (GluRs) formed by assembly of the GluRζ subunit (called NR1 in rats) with any one of four GluRε subunits (GluRε1–4; NR2A–D), play an important role in excitatory neurotransmission, synaptic plasticity and brain development. Recent pharmacological studies have also indicated a role for NMDA receptors in drug addiction. In the present study, we investigated the behavioural adaptations to addictive drugs such as phencyclidine (PCP), methamphetamine (MAP) and morphine (MOR) in mice lacking the GluRε1 subunit of the NMDA receptor. GluRε1 mutant mice exhibited a malfunction of NMDA receptors, as evidenced by the reduction of [3H]MK-801 binding in an autoradiographic receptor binding assay. GluRε1 mutant mice showed an attenuation of acute PCP- and MAP-induced hyperlocomotion. The development of sensitization by repeated treatment with PCP and MAP at a low, but not high, dose was also suppressed. The development of MOR-induced analgesic tolerance and naloxone-precipitated MOR withdrawal symptoms were attenuated in GluRε1 mutant mice. In the place conditioning test, PCP-induced place aversion in naive mice and place preference in PCP-pretreated mice, as well as MOR-induced place preference, were diminished whereas MAP-induced place preference was not affected in GluRε1 mutant mice. These findings provide genetic evidence that GluRε1 subunit-containing NMDA receptors are involved in certain aspects of drug addiction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We examined the regulation of the acoustic startle response in mutant mice of the N-methyl-d-aspartate (NMDA)- and δ-subtypes of the glutamate receptor (GluR) channel, which play important roles in neural plasticity in the forebrain and the cerebellum, respectively. Heterozygous mutant mice with reduced GluRε2 subunits of the NMDA receptor showed strongly enhanced startle responses to acoustic stimuli. On the other hand, heterozygous and homozygous mutation of the other NMDA receptor GluRε subunits exerted no, or only small effects on acoustic startle responses. The threshold of the auditory brainstem response of the GluRε2-mutant mice was comparable to that of the wild-type littermates. The primary circuit of the acoustic startle response is a relatively simple oligosynaptic pathway located in the lower brainstem, whilst the expression of GluRε2 is restricted to the forebrain. We thus suggest that the NMDA receptor GluRε2 subunit plays a role in the regulation of the startle reflex. Ablation of the cerebellar Purkinje cell-specific δ2 subunit of the GluR channel exerted little effect on the acoustic startle response but resulted in the enhancement of prepulse inhibition of the reflex. Because inhibition of the acoustic startle response by a weak prepulse is a measure of sensorimotor gating, the process by which an organism filters sensory information, these observations indicate the involvement of the cerebellum in the modulation of sensorimotor gating.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Telencephalin (TLCN) is a cell adhesion molecule selectively expressed in the telencephalon of the mammalian brain. The mutant mice lacking TLCN had no detectable abnormalities in their neural development and synaptic structures. Ablation of TLCN increased the hippocampal long-term potentiation and its saturation level. The TLCN mutation selectively enhanced the performance of the radial maze and water-finding tasks, learning tasks with appetitive reinforcers, but not the contextual fear conditioning and Morris water maze tasks with aversive stimuli for conditioning. Furthermore, the TLCN mutant mice showed an increase of prepulse inhibition of the acoustic startle response. These results suggest that TLCN is a determinant of the dynamic range of synaptic plasticity and plays roles in reward-motivated learning and memory and sensorimotor gating.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRε1 (NR2A), GluRε2 (NR2B), and GluRζ1 (NR1) subunits of the N-methyl-d-aspartate (NMDA) receptor channel, and determined their distributions in the mouse hippocampus. Using NMDA receptor subunit-deficient mice as the specificity controls, section pretreatment with proteases (pepsin and proteinase K) was found to be very effective to detect authentic NMDA receptor subunits. As the result of modified immunohistochemistry, all three subunits were detected at the highest level in the strata oriens and radiatum of the CA1 subfield, and high levels were also seen in most other neuropil layers of the CA1 and CA3 subfields and of the dentate gyrus. However, the stratum lucidum, a mossy fibre-recipient layer of the CA3 subfield, contained low levels of the GluRε1 and GluRζ1 subunits and almost excluded the GluRε2 subunit. Double immunofluorescence with the AMPA receptor GluRα1 (GluR1 or GluR-A) subunit further demonstrated that the GluRε1 subunit was colocalized in a subset, not all, of GluRα1-immunopositive structures in the stratum lucidum. Therefore, the selective scarcity of these NMDA receptor subunits in the stratum lucidum suggests that a different synaptic targeting mechanism exerts within a single CA3 pyramidal neurone in vivo, which would explain contrasting significance of the NMDA receptor channel in LTP induction mechanisms between the mossy fibre-CA3 synapse and other hippocampal synapses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To elucidate the role of the N-methyl-d-aspartate (NMDA) -type glutamate receptor subunit ε1 (GluRε1) in classical eyeblink conditioning, delay and trace eyeblink conditioning were investigated in GluRε1-null mutant mice. In delay conditioning and short-trace interval conditioning with a trace interval of 250 ms, GluRε1 mutant mice attained a normal level of the conditioned response (CR), although acquisition was a little slower than in wild-type mice. In contrast, GluRε1 mutant mice exhibited severe impairment of the attained level of the CR and disturbed temporal pattern of CR expression in trace conditioning with a longer trace interval of 500 ms. These findings indicate that GluRε1 is essential for long-trace interval eyeblink conditioning. The impairments of the associative learning with a long temporal separation between the conditioned and unconditioned stimuli observed in the GluRε1 mutant mice could be attributed to an impairment of hippocampal long-term potentiation in this line of mutant mice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Mice lacking the glutamate receptor subunit δ2 (GluRδ2) are deficient in cerebellar long-term depression (LTD) at the parallel fibre–Purkinje cell synapses. We conducted delay and trace eyeblink conditioning with these mice, using various temporal intervals between the conditioned stimulus (CS) and unconditioned stimulus (US). During trace conditioning in which a stimulus-free trace interval (TI) of 250, 100 or 50 ms intervened between the 352-ms tone CS and 100-ms US, GluRδ2-mutant mice learned as successfully as wild-type mice. Even in the paradigm with TI = 0 ms, in which the end of CS and onset of US are simultaneous, there was no difference between the GluRδ2-mutant and wild-type mice in their acquisition of a conditioned response. However, in the delay paradigm in which the 452-ms CS overlapped temporally with the coterminating 100-ms US, GluRδ2-mutant mice exhibited severe learning impairment. The present study together with our previous work [Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M. & Kirino, Y. (2001) Eur. J. Neurosci.,13, 1249–1254], indicates that cerebellar LTD-independent learning is possible in paradigms without temporal overlap between the CS and US. On the other hand, GluRδ2 and cerebellar LTD are essential for learning when there is CS–US temporal overlap, suggesting that the cerebellar neural substrates underlying eyeblink conditioning may change, depending on the temporal overlap of the CS and US.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...