Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 17 (1970), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Crude mitochondrial fractions prepared from rat brains took up l-tryptophan. The component of the crude mitochondrial fraction responsible for this uptake is the synaptosome. After uptake of tryptophan occurred, rupture of synaptosomes released 97 per cent of the tryptophan unchanged. Rupture of synaptosomes abolished uptake.Penetration of the limiting membrane of synaptosomes by l-tryptophan both as influx and efflux was studied. Uptake of l-tryptophan was rapid, temperature dependent, partially inhibited by cyanide, 2-deoxy-d-glucose and ouabain, but apparently unaffected by low external sodium ion concentrations. d-tryptophan was a poor inhibiteur of l-tryptophan uptake. Concentration gradients Internal: external of up to 4:1 were achieved. Kinetic studies on l-tryptophan uptake and its competitive inhibition by l-phenylalanine indicated a saturable carrier-mediated transport system, present in the rat at birth. l-Tryptophan efflux from preloaded synaptosomes was markedly stimulated by certain arrino acids and its influx stimulated by preloading with l-tryptophan. This countertransport is further evidence for carrier-mediated or facilitated diffusion. On the basis of countertransport data there seem to be at least two systems for transporting amino acids across synaptosomal membrane.The relevance of these studies to the role of l-tryptophan as the initial precursor of brain 5-hydroxytryptamine is examined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 708-711 
    ISSN: 1432-0827
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 36 (1984), S. S37 
    ISSN: 1432-0827
    Keywords: Bone lining cells ; Osteoclasts ; Osteoblasts ; Remodeling activation ; Chemotactic cell migration ; Coupling factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The cellular basis of the normal bone remodeling sequence in the human adult is discussed in relation to a cycle of five stages—quiescence, activation, resorption, reversal, formation, and return to quiescence. Normally, 80% or more of free bone surfaces are quiescent with respect to remodeling. The structure of the quiescent surface comprises 5 layers; listed in order out toward the bone marrow these are: the lamina limitans (the electron dense outer edge of the mineralized bone matrix), unmineralized connective tissue that may be confused with osteoid by light microscopy, flattened lining cells of osteoblast lineage separated by narrow gaps, more unmineralized connective tissue, and finally either the squamous sac cells of red marrow or the cytoplasm of fat cells of yellow marrow. Activation requires the recruitment of new osteoclasts derived from precursor cells of the mononuclear phagocyte system (and so ultimately from the hematopoietic stem cell), a method for precursor cells to penetrate the cellular and connective tissue barrier of the quiescent surface, and so gain access to the bone mineral, and mechanisms for their attraction and binding to the mineralized surface, possibly in response to chemotactic signals released from bone matrix or mineral. Each of these three steps is probably mediated in some way by lining cells. Resorption is carried out by osteoclasts, most of which are multinucleated. The mean life span of individual nuclei is about 12.5 days; the additional nuclei needed to sustain resorption may be derived fromlocal as well as blood-bone precursors, but nothing is known of their fate. Mononuclear cells may participate not only as precursor cells but as additional resorbing cells, helper cells, and releasers of osteoclast-stimulating agents such as prostaglandins or OAF. It is not known how the size, shape and depth of resorption cavities are controlled, but termination of resorption may involve the release of a suppressor agent (such as prostacyclin) by osteocytes and/or lining cells. During the reversal period the resorption cavity is smoothed off and cement substance is deposited, but the responsible cells are unknown. Successful coupling of formation to resorption requires the proliferation and differentiation of osteoblast precursor cells, focal accumulation of the new osteoblasts within the resorption cavity, and their alignment as a continuous monolayer of uniform polarity. These processes are probably mediated by growth factors released during resorption, and by chemotactic agents present in the bone matrix or in the cement substance. Formation of new bone within the resorption cavity begins with rapid matrix apposition followed some days later by the onset of mineralization. Although the average rates of these two processes during the life span of the osteoid seam (the layer of unmineralized bone matrix) are the same, their instantaneous rates are systematically out of step, so that the osteoid seam width increases rapidly to a maximum of about 20 µm and then declines progressively. At each point on the surface a single osteoblast makes all the bone matrix that is formed, and how completely the cavities are refilled probably depends more on the number of osteoblasts initially assembled than on their individual activity. At the termination of matrix synthesis, mineralization continues more slowly until the osteoid seam eventually disappears and the cells remaining on the surface complete their morphologic and functional transformation to lining cells. The surface has now returned to its original state of quiescence except that the bone is younger. How the remodeling sequence just described is modified to accomplish structural change in response to altered mechanical load is unclear; in particular, it is not known whether there can be direct transformation of a quiescent to a forming surface without intervening resorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1433-2965
    Keywords: Key words: Bone histomorphometry – Osteomalacia – Tetracycline labeling – Vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract: We compared initial and final bone histomorphometric findings in 66 osteoporotic patients treated with sodium fluoride (NaF) according to three regimens, and in 7 osteoporotic patients who did not receive NaF. Fourteen patients received continuous NaF 75 mg/day (high-dose) with calcium 1500 mg/day for a mean of 41 months. Twenty-six patients received continuous NaF 50 mg/day (low-dose) with calcium 2000 mg/day for a mean of 15 months, either with (10 patients) or without (16 patients) vitamin D. Twenty-six patients received cyclical low-dose NaF, alternating with vitamin D, for a mean of 15 months and a total treatment duration of 28 months, of whom 14 were and 12 were not on NaF at the time of the second biopsy. Disregarding differences between regimens, there were significant increases in total and mineralized bone volume and trabecular thickness and nonsignificant decreases in these measurements in the control group. Fluoride-induced bone formation was exclusively appositional with no evidence for the creation of new trabeculae. The effect of low-dose NaF on bone structure was the same when the same total dose was given continuously or intermittently, and when the patient was or was not taking vitamin D. The increases in total and mineralized bone volume but not trabecular thickness were greater with high-dose than with low-dose NaF. Low-dose NaF caused modest but significant increases in all osteoid indices, and modest but significant declines in adjusted apposition rate and osteoid maturation rate and no change in bone formation rate. With high-dose NaF, the increase in BV/TV was greater but all indices of osteoid accumulation were much higher and all indices of impaired osteoblast function and mineralization were much lower, and 12 of 14 patients had some form of osteomalacia. This occurred also in 3 of 30 patients treated with low-dose NaF who were not taking vitamin D; the mean increase in osteoid thickness was significantly greater in these patients than in 22 low-dose patients who were taking vitamin D. We conclude: (1) The inconsistent effect of NaF in increasing bone strength is partly due to failure to restore connectivity in patients with severe bone loss and partly due to substantial osteoid accumulation. (2) Even low-dose NaF causes impaired osteoblast function, but this is much greater with high-dose prolonged therapy. (3) There is an unexplained discrepancy between the increase in bone formation implied by increases in spinal bone mineral and the lack of increase in bone formation measured histomorphometrically. (4) Defective mineralization is more closely related to the total cumulative dose of NaF than to the duration of treatment, and with low-dose treatment may be preventable by vitamin D. (5) Future clinical trials should be carried out with smaller doses of NaF and before there has been substantial loss of horizontal trabeculae in the spine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1433-2965
    Keywords: Clinical trial ; Fluoride ; Osteoporosis ; Vertebral fracture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The anti-fracture efficacy of sodium fluoride (NaF) was evaluated in 84 postmenopausal white women with spinal osteoporosis. The dose of NaF used was 75 mg/day and all patients in this prospective, randomized, double-blind, placebo-controlled clinical trial received calcium supplements (carbonate salt) 1500 mg/day in addition to participating in a structured physical therapy program. For each of the outcome measures (change in stature, change in cortical bone mass in the forearm and development of new vertebral fractures determined by change in vertebral morphometry and by scintigraphy) there was no significant difference between the fluoride or placebo treated groups. Side effects, predominantly gastrointestinal symptoms and the development of the painful lower extremity syndrome, occurred significantly more frequently in the fluoride group (P〈0.05). Peripheral fractures were not more frequent in the fluoride group. We conclude that, in the dose and manner used in this study, NaF is no more effective than placebo in retarding the progression of spinal osteoporosis. There is no role for NaF in the treatment of osteoporosis outside the confines of clinical research.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Osteoporosis international 3 (1993), S. 18-23 
    ISSN: 1433-2965
    Keywords: Body mass ; Bone mineral density ; Race ; Skin reflectometry ; stadiometer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We compared skin color, body size and bone mineral density (BMD) among three groups of postmenopausal women: 104 healthy black women, 45 healthy white women, and 52 osteoporotic white women with vertebral fractures. Skin color was measured by reflectometry, stature with a Harpenden stadiometer, weight with digital scales, and radial BMD by single photon absorptiometry. There were no significant differences in mean skin color (age-adjusted) between the healthy and osteoporotic white women, although both white groups differed from the black group. There was no significant correlation between skin color and BMD (age- and weight/height-adjusted) in any of the groups. All three groups differed significantly in age-adjusted BMD, although there was less difference between the healthy blacks and whites when covariates (body size, age) were taken into account. We further investigated body size differences by estimating stature at age 55 in all three groups based on our observations that osteoporotic women with vertebral fractures lose height at a rate that is 2.6 times faster than that of healthy aging women. Our analyses indicate that the osteoporotics were not shorter than the normals before the onset of their disease (based on estimated height), and do not have a significantly smaller body mass (weight/height and weight/height2) than the normal white women. Additionally, the osteoporotics are above the ideal body mass index recommended by the National Institutes of Health. We conclude that fair skin is not a risk factor for osteoporosis and that large body size is not protective against the development of osteoporosis, although it may have a salutary effect on BMD in both blacks and whites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Osteoporosis international 4 (1994), S. 382-398 
    ISSN: 1433-2965
    Keywords: Adolescent fractures ; Bone accumulation ; Bone turnover ; Cortical porosity, mechanism and metabolic significance ; Mechanostat ; Physical activity ; Puberty
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Bones grow by two processes: cortical bone is made by periosteal apposition (growth in width), and cancellous bone is made by endochondral ossification (growth in length). In both the axial and appendicular skeleton, about half of peak adult bone mass is accumulated during the adolescent growth spurt, which occurs two years earlier in girls than in boys, and is under pituitary control via interactions between growth hormone and sex hormones. Throughout growth, but particularly during adolescence, the ability of bone to adapt to mechanical loading is much greater than after maturity. This is the main reason why the effects of physical activity on bone are greater in cross-sectional studies in young athletes than in longitudinal studies in previously sedentary adults. In wild animals, by the time growth has ceased, the bones must be as strong as they will ever need to be, and attainment of further strength after cessation of growth would serve no biologic purpose. Adaptation of growing bone to mechanical loading is the purpose of the mechanostat, which enablesphysiologic adaptation in individuals to establish and maintain a species-specific property of the bones that is determined byevolutionary adaptation in populations. But growth confers risks as well as benefits to the skeleton. The large increase in incidence of upper extremity (particularly lower forearm) fractures, coincident with the adolescent growth spurt in both sexes, is due to an increase in cortical porosity as a consequence of an increase in intracortical bone turnover, which supplies some of the calcium needed by the growing ends of the long bones. This enables an increased demand for calcium to be spread over a longer time, analogous to the cyclic physiologic osteoporosis which occurs during the antler growth cycle in deer. The subsequent decline in cortical porosity is responsible for the continued increase in radial bone density after cessation of growth, referred to as consolidation. In the present state of knowledge, an increased incidence of fracture during the adolescent growth spurt is the inescapable consequence of an appropriate level of physical activity, and is the price that has to be paid in order to maximize bone accumulation during growth and minimize fracture risk in old age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Osteoporosis international 5 (1995), S. 412-412 
    ISSN: 1433-2965
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Osteoporosis international 2 (1992), S. 251-251 
    ISSN: 1433-2965
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...