Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 31 (1989), S. 463-466 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Mutants of Candida maltosa were isolated that lacked saccharopine reductase (lys9) and saccharopine dehydrogenase (lys1) and were able to accumulate α-aminoadipate-δ-semialdehyde (AASA) in the cell and excrete it into the culture medium. The effects of incubation time, lysine concentration, and carbon and nitrogen sources on AASA production were examined. In the presence of 15 g glucose/1, 1.25 g NH4H2PO4/l and 50 mg l-lysine/l in a minimal salt medium C. maltosa G285 (lys1) produced about 80–90 mg AASA/l during 48 h of growth. A simple and rapid procedure to isolate AASA from the medium using Dowex 50X4 is described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: β-isopropylmalate dehydrogenase ; Allelic variation ; Genome organisation ; Candida maltosa ; Silent genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three different alleles of the β-isopropylmalate dehydrogenase gene were cloned and sequenced from a leucine auxotrophic mutant, G587, of Candida maltosa. The cloning of functionally-intact wild-type genes from this mutant strain suggests the presence of silent gene copies. An interallelic-divergence comparison has provided evidence for new regulatory mechanisms. Sequence data and karyotype analysis argue for a highly-aneuploid genome of C. maltosa. An interpretation for the spontaneous auxotrophy-prototrophy-auxotrophy sequence of mutations in C. maltosa is suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Pathway ; Gene cloning ; Karyotyping ; Mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The four enzymatic steps in the conversion of α-ketoisovaleriate to leucine were examined in the wild type and in 13 leucine auxotrophic strains of Candida maltosa. The genetic lesions in the auxotrophs, involve at least five different loci and are correlated with three enzymatic steps. This was confirmed by gene cloning, protoplast fusion, and enzyme assays. The pathway for leucine biosynthesis in C. maltosa shows general similarity to that of other lower eukaryotes but there are individual differences in the numbers of genes responsible for single enzymatic steps. A disomic state of the chromosomes carrying genes coding for α-isopropylmalate synthase and β-isopropyl-malate dehydrogenase was elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current microbiology 11 (1984), S. 241-245 
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The usefulness of hybridization by protoplast fusion and mitotic segregation for the genetic analysis of the imperfect fodder yeastCandida maltosa was tested. Mitotically stable fusion hybrids were obtained with frequencies between 10−6 and 10−7. Complementation tests were performed by protoplast fusion. Substances that are known to induce frequent mitotic segregation in other yeast species such as benomyl, p-fluorophenylalanine, and acriflavine were ineffective inC. maltosa. UV irradiation induced mitotic segregation in up to 10%. This agent induced mainly mitotic crossing over inC. maltosa. Our data enabled the construction of the linkage group I with the sequenceCEN-ade-26-pro-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 1209-1217 
    ISSN: 0749-503X
    Keywords: Arxula adeninivorans ; yeast ; genetic markers ; linkage analysis ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The nuclear genome of the anamorphic yeast Arxula adeninivorans was analysed by benomyl-induced haploidization of parasexual hybrids marked with 32 auxotrophic mutations and pulsed field gel electrophoresis followed by DNA hybridization. Twenty-seven genes have been arranged into four linkage groups by haploidization, 15 genes belong to group 1, six to group 2, and three each to groups 3 and 4. Five genes could be localized by DNA hybridization on three out of four separated chromosomes. The gene LYS2 of the largest linkage group 1 and the 25S rDNA were identified on the largest chromosome, the GAA and the TEF1 gene on chromosome 2, and the ILV1 gene of linkage group 4 on the smallest chromosome.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...