Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 49 (1975), S. 105-115 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In western Crete, Greece, a widespread occurrence of chloritoid-bearing metapelites with the main mineral assemblage chloritoid-phengitic white mica-Fe-rich chlorite-quartz was recorded to form the country rock of glaucophane-bearing metabasalts. Six bulk rock analyses of the metapelites conform to the compositional restrictions evaluated by Hoschek (1967) for the formation of chloritoid. Three microprobe analyses revealed chloritoid compositions low in Mg and Mn, and, consequently, high in Fe. The metamorphic grade documented in the metapelites is obviously related to a subsequent prograde metamorphism by which, in the adjacent meta-basalts, epidote is formed at the expense of lawsonite. No relict of a high-P, low-T assemblage, in part well preserved in the meta-basalts, was recognized in the chloritoid schists. The significance of the metamorphic history is briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The ophiolitic mélange in the uppermost tectonic unit of the Cretan nappe pile contains crystalline slices which consist of a low-pressure/high-temperature metamorphic sequence and synmetamorphic intrusions, ranging in composition from diorite to granite. The plutonic rocks conform to two different igneous suites, dominated by diorites in eastern, and granites in central Crete, displaying I-type and A-type characters, respectively. Some of the granites from central Crete are classified as transitional I/S-type. They are closely associated with migmatitic paragneisses. Based on major and trace element, REE, Sr- and Nd-isotope geochemistry, the mafic members of both suites are derived from a depleted mantle source. The higher concentrations of P and Ti in the mafic members of the igneous suite in central Crete and the deviant trend of the whole suite may be explained by a different mantle source or a lower degree of partial melting. In both suites, magmatic evolution was governed by fractional crystallization of amphibole/clinopyroxene, plagioclase and minor phases. In addition, mixing or mingling of compositionally different magmas is indicated for the intrusive suite of eastern Crete whereas in central Crete the magma composition was at least partially modified through assimilation of (meta)pelites. The geochemical results suggest that the plutonic rocks formed in a supra-subduction zone setting. However, a formation during continental lithospheric extension cannot be ruled out. Published and new Rb–Sr and K–Ar dates on amphiboles and biotites from intrusive rocks and their metamorphic country rocks show that the peak of the low-P/high-T metamorphism and the intrusion of the two igneous suites testify to the same thermal event of Late Cretaceous age. A similar Late Cretaceous association of metamorphic and plutonic rocks has been described from the uppermost tectonic unit in the Attic–Cycladic Crystalline Complex. Together with the Cretan occurrences, they form a small sector radiating SSW along a distance of 300 km, across the general trend of the tectonic zones in the Hellenic orogen. This N–S alignment is regarded as a primary feature which may delineate the frontier zone between the Hellenides and the Taurides. The real paleogeographic position and geodynamic significance of the Late Cretaceous low-pressure/high-temperature belt, however, remains enigmatic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 44 (1974), S. 231-236 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Glaucophane-bearing meta-basalts of Western Crete are compared with basalts of different crustal environments with respect to their Zr contents and Ti/Zr correlations. Two groups of meta-basalts are distinguished. The first group (90–140 ppm Zr) corresponds to ocean-floor basalts while the second one (210–430 ppm Zr) nearly fits in oceanic alkali basalts. The first group would represent the more primitive, the second one the more differentiated members of a basalt suite which are transformed into glaucophane-lawsonite schists during the subduction of an oceanic plate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The uppermost unit of the Cretan nappe system consists of ophiolites on the top, and an ophiolitic mélange at the base. Among the various constituents of the mélange, there are slices of low-P/high-T metamorphics. They form a variegated series consisting of tholeiitic ortho-amphibolites, para-amphibolites, andalusite and sillimanite-cordierite-garnet bearing mica schists, calcsilicate rocks, and marbles. The metamorphic sequence is locally intruded by early tectonic magmatites of gabbroic, dioritic and granitic composition. Critical mineral assemblages lead to a maximum temperature of about 700° C reached during metamorphism, at a total pressure of 4–5 kilobars. K — Ar dating on 6 hornblendes, 7 biotites and 1 muscovite yielded cooling ages of 75–66 m.y. and confirmed earlier results according to which the metamorphism and related magmatism took place in Late Cretaceous times. In order to evaluate the age relationships between the hightemperature metamorphics within the ophiolitic mélange and the ophiolites, hornblendes from ultramafic and mafic rocks of the ophiolite complex were dated by the K — Ar method. Hornblende from one schistose hornblendite forming a constituent of the ophiolites proper yielded 156 m.y. and thus provides a middle Jurassic minimum age for the formation of this piece of oceanic lithosphere. Four hornblendes of calc-alkaline gabbrodiorite dikes within the ophiolite complex gave distinctly lower K — Ar dates of about 140 m.y.. The dikes probably intruded after the detachment of the ophiolites in an island-arc or continental-margin environment. As a consequence, the high-temperature metamorphics and related intrusives in the ophiolitic mélange of Crete are genetically unrelated to the overlying ophiolites. The paleogeographic position of the crystalline terrane, slices of which are now incorporated into the ophiolitic mélange is still open to discussion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 114 (1993), S. 349-356 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the low-grade, high-pressure (≈400°C, 10 kbar) metamorphic Phyllite-Quartzite Unit of Western Crete, widespread occurrences of aragonite marbles have been discovered recently. A sedimentary precursor is proved by relic structures (bedding, fossils). Partial or complete transformation of aragonite into calcite is ubiquitous. Compositional and microstructural features reflect the metamorphic history: (1) The high-pressure stage is documented by aragonite that is chemically characterized by incorporation of variable amounts of Sr and the lack of Mg. The most Sr-rich aragonite has about 9 wt% SrO (X Sr arag =0.09). A compositional zoning observed in some aragonite crystals may be due to the prograde divariant calcite⇒aragonite transformation in the system CaCO3-SrCO3. Because the parent rocks probably were Sr-poor calcite limestones, one can speculate that strontium has been supplied from an external source under high-pressure conditions. (2) During uplift, calcite replacing aragonite did not equilibrate with unreplaced aragonite. Disequilibrium is indicated by highly variable compositions of calcite crystals that show topotactic relations to the host aragonite. The calcite compositions range from that of the host aragonite (Sr-rich and Mg-free) to Mg-bearing and Sr-poor. (3) Calcite that recrystallized during retrogression is generally Sr-poor (mean value ofX Sr〈0.005), Mg-bearing (X Mg≈0.010), and chemically homogeneous. Because practically no Sr remains in the calcite, an interaction with a fluid phase is indicated. In fine-grained calcite marbles rich in solid organic matter, microstructural features indicative of former aragonite may be present. (4) The last stage of retrogression is documented by the appearance of radiating aragonite in veins and nodules. This aragonite, which shows neither deformation nor retrogression, was probably formed metastably in a near-surface environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 123 (1996), S. 293-307 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  In central Rhodope of northern Greece, kyanite eclogites were discovered in the area of Thermes. They are strongly overprinted and exhibit a multi-stage development of minerals and mineral assemblages formed during successive stages of the exhumation. The initial high-pressure assemblage was garnet+omphacite+kyanite+zoisite+phengite+rutile+quartz. Corundum, Fe-Mg-spinel, sapphirine and högbomite occur as products of a first, high-temperature overprint, still at high pressures, whereas various symplectites [corundum-plagioclase (pl), spinel-pl, sapphirine-pl, clinopyroxene-pl, biotite-pl, amphibole-pl] grew during subsequent stages of the exhumation. Diablastic amphibole+plagioclase formed as end-products of the amphibolitization. According to geochemical data, the protoliths of the kyanite eclogites were basalts to basaltic andesites with “volcanic arc” affinities. For the high-pressure stage of metamorphism, minimum PT conditions were around 19 kbar, 700°C, while for the initial stages of the overprint, high-pressure granulite-facies conditions prevailed (T〉800°C, at P〉15 kbar). The PT conditions of the amphibolite facies were 8–11 kbar, 580–690°C. The kyanite eclogites of Thermes record the highest temperatures of metamorphism within the whole of Rhodope.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 60 (1977), S. 321-324 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Problems related to the formation of chloritoid in metapelites, associated with lawsonite-glaucophane bearing metabasalts, in the quartzitephyllite series of western Crete (Greece) are discussed. It is supposed that chloritoid was formed, during prograde metamorphism, according to a gliding-equilibrium reaction of the type (Fe,Mg)-carpholite1+chlorite1 (Fe,Mg)-carpholite1 2+(Fe,Mg)-chloritoid1 2 +chlorite1→2+quartz+H2O ⇋ (Fe,Mg)-chloritoid2+chlorite2+quartz+H2O. This view is stipulated by the occurrence of ferrocarpholite-chloritoid schists in the southeastern part of central Crete. The assemblage chloritoid+ lawsonite recently recognized in western Crete provides evidence that the formation of chloritoid started well within the stability field of lawsonite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Polymetamorphic rocks of Sifnos (Greece) have been investigated by Rb-Sr, K-Ar, and fission track methods. Critical mineral assemblages from the northern and southernmost parts of Sifnos include jadeite+quartz+3T phengite, and omphacite+garnet +3T phengite, whereas the central part is characterized by the assemblage albite+chlorite+epidote+2M 1 phengite. K-Ar and Rb-Sr dates on phengites (predominantly 3T) of the best preserved high P/itTmetamorphic rocks from northern Sifnos gave concordant ages around 42 m.y., indicating a Late Lutetian age for the high P/T metamorphism. Phengites (2M 1+3T) of less preserved high P/T assemblages yielded K-Ar dates between 48 and 41 m.y. but generally lower Rb-Sr dates. The higher K-Ar dates are interpreted as being elevated by excess argon. K-Ar and Rb-Sr ages on 2M 1 phengites from central Sifnos vary between 24 and 21 m.y. These ages date a second, greenschist-facies metamorphism which overprinted the earlier high-pressure metamorphic rocks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...