Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1459
    Keywords: Key words Multiple sclerosis ; Magnetic resonance imaging ; Disease activity ; Fast spin echo ; Fast fluid-attenuated inversion ; recovery ; Reproducibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous studies have addressed the question of the precision in assessing multiple sclerosis (MS) activity by counting enhancing lesions on gadolinium enhanced brain magnetic resonance imaging (MRI). However, counting the active lesions on serial unenhanced MRI obtained by various pulse sequences has not been yet considered. We compared the interobserver levels of agreement in reporting active MS lesions on serial enhanced and unenhanced MRI to assess whether the use of various unenhanced techniques may change the degree of interobserver measurement reproducibility. Dual-echo conventional spin echo (CSE), dual-echo fast spin echo (FSE), fast fluid-attenuated inversion recovery (FLAIR) and Gd-enhanced T1-weighted brain MRI were obtained from five MS patients at baseline and monthly for 2 months. Six experienced observers independently identified and counted active MS lesions on the two follow-up MRI scans. Active lesions were considered to be all the enhancing lesions and any new or enlarging lesion on enhanced and unenhanced scans. Interobserver levels of agreement were calculated by weighted κ values. Very good agreement was reached only for counting total and new Gd-enhancing lesions. Good agreement was achieved for counting new lesions on the three unenhanced techniques, whereas the agreement for counting enlarging lesions was poor with all the MRI techniques. The level of agreement was significantly heterogeneous for various MRI techniques but not for various lesion sites. These results confirm that counting enhancing lesions is the most reliable method for assessing MS activity, but the use of any of the available unenhanced MRI techniques did not result in different levels of interobserver agreement when reporting new and enlarging MS lesions on serial scans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1459
    Keywords: Key words Magnetic resonance imaging ; Turbo spin echo ; Fast fluid attenuated inversion recovery ; Systemic autoimmune diseases ; Brain lesions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Fast fluid-attenuated inversion recovery (fFLAIR) is more sensitive that conventional or fast spin echo T2-weighted magnetic resonance imaging (MRI) for detecting lesions in the brain of patients with ischemic, inflammatory, or demyelinating diseases of the CNS. We ¶investigated whether the use of fFLAIR also increases the sensitivity of brain MRI assessment in patients with systemic autoimmune disorders. Turbo spin echo (TSE) dual-echo and fFLAIR scans of the brain were obtained from patients affected by systemic lupus erythematosus (SLE) with (NSLE, n = 9) and without clinical CNS involvement (n = 15), Behçet disease (n = 5), Wegener granulomatosis (n = 9), and antiphospholipid antibody syndrome (n = 6). Brain hyperintense lesions were counted and classified according to their size and their location by two observers by consensual agreement. The total lesion volume was measured using a semiautomated technique for lesion segmentation on both TSE and fFLAIR scans. The imaging modalities showed brain hyperintense lesions in all 9 SLE patients with CNS involvement, 5 of 15 SLE patients without CNS involvement, 5 of 9 patients with Wegener granulomatosis, 1 of 5 with Behçet disease, and 3 of 6 with antiphospholipid antibody syndrome. ¶A total of 342 lesions were seen on both sequences; 88 were seen only on TSE and 54 only on fFLAIR scans. The average number of brain lesions per scan was higher on TSE than on fFLAIR, since significantly more discrete (P 〈 0.002) and small (P = 0.004) lesions were seen on TSE than on fFLAIR. The median total lesion volume, however, was similar on TSE and fFLAIR. Our study indicates that the use of fFLAIR does not improve the sensitivity of fast dual-echo MRI for detecting brain abnormalities in patients with systemic autoimmune disorders.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...