Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 3265-3269 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The electronics for the microchannel plate photomultiplier tubes used in the LIDAR (Light Detection and Ranging) Thomson scattering diagnostic on the JET tokamak are described. It is shown how the microchannel plate photomultiplier tubes are gated with a very small coupling between gate signal and output, and how ≈300 V transient pulses with rise times of 230 ps are clipped to safe levels of ≈40 V.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1451-1456 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3-J pulse energy, 300-ps pulse duration, 0.5-Hz repetition rate) together with a 700-MHz bandwidth detection and registration system yields a spatial resolution of about 12 cm. A spectrometer with six channels in the wavelength range 400–800 nm gives a dynamic range of the temperature measurements of 0.3–20 keV. The stray light problem in the backscatter geometry is overcome by spectral discrimination and gating of the photomultipliers. A ruby filter in the spectral channel containing the laser wavelength allows calibration of the vignetting along the line of sight by means of Raman scattering, enabling the measurement of density profiles. The low level of background signal due to the short integration time for a single spatial point yields low statistical errors (ΔTe /Te ≈6%, Δne /ne ≈4% at Te =6 keV, ne =3×1019 m−3 ). Goodness-of-fit tests indicate that the systematic errors are within the same limits. The system is described and examples of measurements are given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3464-3466 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A description is given of a nondestructive method utilizing a microwave cavity for measuring the mass of high-speed pellets of solid hydrogen. The cavity is designed for use on a multishot pellet injector, where eight pellets are fired successively with trajectories being parallel and symmetrical around the injector axis. The cavity is cylindrical with the axis coinciding with the injector axis. When a pellet passes through the cavity through holes of 15–16 mm diameter, the change in resonant frequency is proportional to the pellet mass. As a result of the cylindrical symmetry the sensitivity will be identical for all pellets. The frequency shift is measured directly and is converted to a signal proportional to the size of the pellet. The cavity was calibrated with pellets of H2 and D2 containing around 6×1020 atoms and with velocities between 1200 and 1500 m/s. The sensitivity was found to be 300±15 mV/1020 atoms in both cases. This is in fair agreement with estimates made from the dielectric constants of solid H2 and D2. The cavity is built together with two optical detectors for time of flight measurements to form an integrated diagnostic unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...