Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (9)
Source
  • Articles: DFG German National Licenses  (9)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 7 (1995), S. 859-864 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 53 (1997), S. 1745-1748 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 31 (1996), S. 6229-6240 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Glass matrix-fibre and glass infiltrated ceramic composites with interconnected phases have been shown to have the potential for displaying optimum thermal conductivity and dielectric constant at 1 MHz making them useful as substrates for electronic packaging. Ceramic (Nicalon and silicon carbide grade (SCS)) fibre-borosilicate glass composites were fabricated using tape casting processes combined with pressure and pressureless sintering techniques. Experiments were also conducted to process AIN ceramics with interconnected porous channels which were then hot infiltrated with borosilicate glass. Results of optical characterization of the composites indicate that infiltration of Nicalon cloth with glass is achieved by hot pressing, while the tape casting and lamination approach followed by sintering is useful for fabricating composites of glass and Nicalon tows. The sintered aluminium nitride ceramics are comprised of ≈28% (volume fraction) interconnected pores. Hot infiltration yielded ≈100 μm penetration of borosilicate glass into the pores of the nitride ceramic. The paper discusses the various scientific aspects involved in processing the glass-fibre and porous AIN composites containing 3-d interconnected pores. Results of the microstructural characterization of these composites are discussed particularly in regards to the desired microstructure essential for these composites to be useful as substrates in electronic packaging.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 30 (1995), S. 3123-3129 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A modified oxide sol-gel (MOSG) process was used to synthesize borophosphosilicate glasses and glass-ceramics using boron oxide and phosphorous pentoxide as starting precursors. The oxide precursors were used to form alkoxidesin situ, which were then hydrolysed and condensed to form borophosphosilicate gels. The dried gels were analysed for their thermal properties and were heat treated accordingly, at a temperature of 800 °C, to crystallize the boron phosphate phase. The resultant xerogels were then analysed for their microstructure. Both pressureless and hot-pressing techniques were used to sinter the calcined gels to form glass-ceramics. The sintered samples were characterized for their microstructure using electron microscopy and evaluated for their dielectric properties. Dielectric measurements indicate that the sintered glass-ceramics possess dielectric constants less than 5 and dissipation factors less than 0.001 at a frequency of 1 MHz. The results of these studies show the potential of the oxide sol-gel-derived borophosphosilicate glass-ceramics for use as substrate materials in microelectronic packaging.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 1097-1106 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speed calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glassceramic materials have been identified over the years which show good promise as candidate substrate materials. Among these, borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant (3.8). Sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, differential thermal analysis and Fourier transform-infrared spectroscopy have been used to characterize the as-as-prepared and heat-treated gels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 1135-1158 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Sulphide compounds belong to the family of chalcogenides and are well known for their optical and electronic properties. They possess good optical properties because of their ability to transmit into the infrared (IR) region. Several sulphide glasses are known to exist which exhibit far infrared transmission and are also useful semiconductors. In recent years, there has been an increasing interest in IR materials to be used on surveillance equipment. This led to the identification of several new crystalline sulphide materials which can transmit very far into the IR region (up to a wavelength of 14 Μm). Crystalline and amorphous rare-earth sulphides emerged as a new class of materials, which possess several unique optical and electronic properties. This paper reviews the status of these rare-earth sulphide amorphous and polycrystalline materials, the techniques used to process these materials and discusses their structure, thermal, mechanical and optical properties. Conventional and emergent novel chemical processing techniques that are used for synthesizing these materials are reviewed in detail. The use of metallorganic precursors and the modification of their chemistry to tailor the composition of the final ceramic are illustrated. The potential of these chemical techniques and their advantages over the conventional solid state techniques used for processing sulphide ceramics is discussed, particularly in light of their successful applications in processing novel electronic and optical oxide ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 14 (1995), S. 906-908 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 4333-4339 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Chemical reactions conducted in solution are known to generate solid precursors containing molecular units that help in the formation of high-temperature phases. The structural units are created by controlling the molecular environments in solution, and as a result, phases that normally form and are stable at high temperatures can be synthesized at low or moderately elevated temperatures. However, the application of chemical approaches for synthesizing phases that normally form at high pressure are relatively unknown. In this work, a simple room-temperature aqueous chemical precipitation route has been used to synthesize the high-pressure cubic spinel modification of ZnIn2S4. A solution coordination model (SCM) has been proposed to explain the formation of the high-pressure phase. The crystallinity, phase purity and phase transformation characteristics of the cubic phase have been studied using X-ray diffraction (XRD) including Rietveld refinement, transmission electron microscopy (TEM), and Auger electron microscopy (AEM). Results of these studies are discussed in the light of a proposed solution coordination model (SCM). © 1998 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 11 (1997), S. 163-179 
    ISSN: 0268-2605
    Keywords: sol-gel ; ceramics ; glasses ; films ; organometallic ; titanium ; niobium ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The advent of the sol-gel technique over the past several decades and the recognition of its excellent flexibility for synthesizing a large variety of oxide ceramics and glasses in both bulk and thin-film forms has generated considerable interest in using solution-based processes to prepare ceramic materials. Because of the success of the sol-gel technique, a number of other chemical processes have been developed utilizing metalorganic/organometallic starting materials to create molecularly architectured precursors, which have proven effective in synthesizing both oxide and non-oxide materials. In the present study, two different chemical approaches have been implemented to synthesize non-oxides (sulfides and nitrides) of reactive transition-metal elements. Accordingly, a novel thio-sol-gel process for preparing TiS2 and NbS2 powders has been studied. In the case of TiS2 synthesis, the chemical reaction has been examined in detail using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography (GC). The effects of modification of the titanium precursor on the morphology of the final sulfide have also been investigated and are discussed. A second, more generalized process has been developed for synthesizing homogeneous precursors in multicomponent systems. Its utilization in preparing ternary nitrides has been demonstrated, and is also presented. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...