Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1992  (1)
  • 1991  (2)
Years
  • 1990-1994  (3)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: Large scale combustion simulations show the need for adaptive methods. First, to save computation time and mainly to resolve local and instationary phenomena. In contrast to the widespread method of lines, we look at the reaction- diffusion equations as an abstract Cauchy problem in an appropriate Hilbert space. This means, we first discretize in time, assuming the space problems solved up to a prescribed tolerance. So, we are able to control the space and time error separately in an adaptive approach. The time discretization is done by several adaptive Runge-Kutta methods whereas for the space discretization a finite element method is used. The different behaviour of the proposed approaches are demonstrated on many fundamental examples from ecology, flame propagation, electrodynamics and combustion theory. {\bf Keywords:} initial boundary value problem, Rothe- method, adaptive Runge-Kutta method, finite elements, mesh refinement. {\bf AMS CLASSIFICATION:} 65J15, 65M30, 65M50.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: In this paper we introduce a discontinuous finite element method. In our approach, it is possible to combine the advantages of finite element and finite difference methods. The main ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is defined on arbitrary triangulations and can be easily extended to nonlinear problems. Two different error indicators are derived. Especially the second one is closely connected to our approach and able to handle arbitrary variing flow directions. Numerical results are given for boundary value problems in two dimensions. They demonstrate the performance of the scheme, combined with the two error indicators. {\bf Key words:} neutron transport equation, discontinuous finite element, adaptive grid refinement. {\bf Subject classifications:} AMS(MOS) 65N30, 65M15.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: For adaptive solution of convection- difussion problems with the streamline-diffusion finite element method, an error estimator based on interpolation techniques is developed. It can be shown that for correctness of this error estimator a restriction of the maximum angle is to be sufficient. Compared to usual methods, the adaptive process leads to more accurate solutions at much less computational cost. Numerical tests are enclosed. {\bf Keywords: } Adaptive finite elements, convection- diffusion equation, internal and boundary layers, streamline-diffusion. {\bf Subject Classifications:} AMS(MOS): 65N15, 65N30
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...