Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel: DFG Deutsche Nationallizenzen  (3)
  • 2000-2004  (3)
  • 2002  (3)
Datenquelle
  • Artikel: DFG Deutsche Nationallizenzen  (3)
Materialart
Erscheinungszeitraum
  • 2000-2004  (3)
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 73 (2002), S. 961-963 
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: The cusp leak was found to have a profile of multiple peaks, when measured near the filaments. This is attributable to multiple discharge paths of primary electrons. The supercusp magnetic configuration is one of several configurations in which strong magnetic-field lines flow into the backplate from the extraction grid. The negative-ion current was measured with a Faraday cup with a magnetic filter changing current from 0 to 100 A. The plasma characteristics were measured in the driver and the extraction regions. © 2002 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1365-2826
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: We have reported that supraoptic nucleus (SON) neurones are excited by prostaglandin E2 (PGE2) presumably via dual postsynaptic PG receptors, FP receptors and unidentified EP receptors, and that presynaptic EP receptors may also be involved in the excitation. In the present study, to clarify the receptor mechanism of the PGE2-mediated actions on SON neurones, we studied the pre- and postsynaptic effects of four newly developed EP agonists that are selective for each of the four EP receptors, EP1−4, on rat SON neurones using extracellular recording and whole-cell patch-clamp techniques. The EP4 agonist ONO-AE1-329 mimicked the excitatory effects of PGE2, whereas the EP1 agonist ONO-DI-004, the EP2 agonist ONO-AE1-257 and the EP3 agonist ONO-AE-248 had little or no effect. The effects of ONO-AE1-329 were unaffected by the EP1/FP/TP antagonist, ONO-NT-012, which potently suppressed the excitation caused by the FP agonist fluprostenol and PGE2. ONO-AE1-329 caused marked excitation when responses to fluprostenol were desensitized by repeated applications of fluprostenol. Patch-clamp analysis in SON neurones showed that ONO-AE1-329 induced inward currents at a holding potential of −70 mV and the reversal potential of the currents was −35.1 ± 2.3 mV. On the other hand, the frequency of spontaneous inhibitory postsynaptic currents recorded from SON slice preparations was suppressed by ONO-AE-248, but unaffected by the other three EP agonists. These results suggest that SON neurones possess postsynaptic EP4 receptors and that γ-aminobutyric acid neurones innervating SON neurones possess presynaptic EP3 receptors in their terminals. Activation of the two EP receptors may be involved in the excitatory regulation of SON neurones by PGE2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1365-2826
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Adrenomedullin is a peptide hormone with multifunctional biological properties. Its most characteristic effects are the regulation of circulation and the control of fluid and electrolyte homeostasis through peripheral and central nervous system actions. Although adrenomedullin is a vasodilator of cerebral vasculature, and it may be implicated in the pathomechanism of cerebrovascular diseases, the source of adrenomedullin in the cerebral circulation has not been investigated thus far. We measured the secretion of adrenomedullin by radioimmunoassay and detected adrenomedullin mRNA expression by Northern blot analysis in primary cultures of rat cerebral endothelial cells (RCECs), pericytes and astrocytes. We also investigated the expression of specific adrenomedullin receptor components by reverse transcriptase-polymerase chain reaction and intracellular cAMP concentrations in RCECs and pericytes. RCECs had approximately one magnitude higher adrenomedullin production (135 ± 13 fmol/105 cells per 12 h; mean ± SD, n = 10) compared to that previously reported for other cell types. RCECs secreted adrenomedullin mostly at their luminal cell membrane. Adrenomedullin production was not increased by thrombin, lipopolysaccharide or cytokines, which are known inducers of adrenomedullin release in peripheral endothelial cells, although it was stimulated by astrocyte-derived factors. Pericytes had moderate, while astrocytes had very low basal adrenomedullin secretion. In vivo experiments showed that adrenomedullin plasma concentration in the jugular vein of rats was approximately 50% higher than that in the carotid artery or in the vena cava. Both RCECs and pericytes, which are potential targets of adrenomedullin in cerebral microcirculation, expressed adrenomedullin receptor components, and exhibited a dose-dependent increase in intracellular cAMP concentrations after exogenous adrenomedullin administration. Antisense oligonucleotide treatment significantly reduced adrenomedullin production by RCECs and tended to decrease intraendothelial cAMP concentrations. These findings may suggest an important autocrine and paracrine role for adrenomedullin in the regulation of cerebral circulation and blood–brain barrier functions. Cerebral endothelial cells are a potential source of adrenomedullin in the central nervous system, where adrenomedullin can also be involved in the regulation of neuroendocrine functions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...