Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (15)
  • 2005-2009  (5)
  • 2019  (15)
  • 2006  (5)
Source
Years
  • 2015-2019  (15)
  • 2005-2009  (5)
Year
Language
  • 1
    Publication Date: 2020-12-15
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-24
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20% in just a few minutes.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-14
    Description: Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem in public transport. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we contribute a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: We present a novel framework to mathematically describe the fare systems of local public transit companies. The model allows the computation of a provably cheapest itinerary even if prices depend on a number of parameters and non-linear conditions. Our approach is based on a ticket graph model to represent tickets and their relation to each other. Transitions between tickets are modeled via transition functions over partially ordered monoids and a set of symbols representing special properties of fares (e.g. surcharges). Shortest path algorithms rely on the subpath optimality property. This property is usually lost when dealing with complicated fare systems. We restore it by relaxing domination rules for tickets depending on the structure of the ticket graph. An exemplary model for the fare system of Mitteldeutsche Verkehrsbetriebe (MDV) is provided. By integrating our framework in the multi-criteria RAPTOR algorithm we provide a price-sensitive algorithm for the earliest arrival problem and assess its performance on data obtained from MDV. We discuss three preprocessing techniques that improve run times enough to make the algorithm applicable for real-time queries.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: For providing railway services the company's railway rolling stock is one if not the most important ingredient. It decides about the number of passenger or cargo trips the company can offer, about the quality a passenger experiences the train ride and it is often related to the image of the company itself. Thus, it is highly desired to have the available rolling stock in the best shape possible. Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well studied in the literature for example see [Maróti and Kroon, 2005; Gábor Maróti and Leo G. Kroon, 2007], or [Cordeau et al., 2001] for applications including vehicle maintenance. The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based on a relaxation of a mixed integer linear programming model with an iterative cut generation to enforce the feasibility of a solution of the relaxation in the solution space of the original problem. The resulting mixed integer linear programming model is based on a hypergraph approach presented in [Ralf Borndörfer et al., 2015]. The new approach is tested on real world instances modeling different scenarios for the ICE high speed train network in Germany and compared to the approaches of [Reuther, 2017] that are in operation at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce solutions with comparable or even better objective function values.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: This paper focuses on a special case of vehicle routing problem where perishable goods are considered. Deliveries have to be performed until a due date date, which may vary for different products. Storing products is prohibited. Since late deliveries have a direct impact on the revenues for these products, a precise demand prediction is important. In our practical case the product demands and vehicle driving times for the product delivery are dependent on weather conditions, i.e., temperatures, wind, and precipitation. In this paper the definition and a solution approach to the Vehicle Routing Problem with Perishable Goods is presented. The approach includes a procedure how historical weather data is used to predict demands and driving times. Its run time and solution quality is evaluated on different data sets given by the MOPTA Competition 2018.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...