Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 5325-5333 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The adjustable photoluminescence (PL) and field electron emission (FEE) properties of boron carbonitride (B–C–N) nanotubes grown under well-controlled conditions are studied systematically. Large-scale highly aligned B–C–N nanotubes are synthesized directly on Ni substrates by the bias-assisted hot filament chemical vapor deposition method. Single-walled B–C–N nanotubes and nanometric B–C–N heterojunctions are obtained by the pulsed-arc-discharge technique and pause-reactivation two-stage process, respectively. It is found that the microstructures, orientations, and chemical compositions of the nanotubes can be controlled by varying growth parameters. The mechanism of the controllable growth is also investigated. Intense and stable PL from the nanotubes is observed in both blue-violet (photon energies 3.14–2.55 eV) and yellow-green bands (photon energies 2.13–2.34 eV) and the emission bands are adjusted by varying the compositions of the nanotubes. FEE properties are also studied and optimized by varying the B or N atomic concentrations in the nanotubes. All these results verify the controllability of the electronic band structure of the B–C–N nanotubes. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 2624-2626 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Large-area highly oriented boron carbonitride (BCN) nanofibers with various compositions were synthesized directly on polished polycrystalline nickel substrates from a gas mixture of N2, H2, CH4, and B2H6 by bias-assisted hot-filament chemical-vapor deposition. The morphology of BCN nanofibers was examined by scanning electron microscopy, the nanofiber structure was studied by high-resolution transmission electron microscopy, and the chemical composition of individual nanofibers was determined by electron energy-loss spectroscopy. Field-emission behavior of the BCN nanofibers was characterized and a high emission current density of about 20–80 mA/cm2 at a low electric field of 5–6 V/μm implies a promising application as field-emission sources. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 124-126 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Boron carbonitride (BCN) nanometric heterojunctions are controllably fabricated by bias-assisted hot-filament chemical vapor deposition with a pause-reactivation two-stage (PRTS) process. Tailored composition revulsion across the nanotube junction is obtained by simply varying the concentration of the gaseous precursor between the two stages of the PRTS process. The critical effect of the plasma power density in the reactivation process on continuous growth of the nanotubes is realized and controlled, leading to successful synthesis of the Y-shaped BCN nanojunctions. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9567
    Keywords: flash method ; thermal contact resistance ; thermal control coatings ; thermal diffusivity ; two-layer composite sample
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The thermal diffusivity of brittle coatings cannot be measured by the flash method directly because of the difficulty of preparing free-standing samples. Adopting the flash method using a two-layer composite sample, it is possible to measure thermal diffusivity if the radiant pulse is well defined and good thermal contact on the interface of the composite sample can be ensured. Using an equilateral trapezoidal pulse of an Nd-glass laser measuring the dimensionless temperature history of the rear face of the sample, we determined the thermal diffusivity of thermal control coatings in the temperature range of 80 to 200°C. The results for different thicknesses of substrate showed that the thermal contact resistance of the interface can be neglected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 21 (2000), S. 479-485 
    ISSN: 1572-9567
    Keywords: diamond ; film ; flash method ; thermal diffusivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper discusses the short-pulse-flash method developed for thermal diffusivity measurements on thin films. Two kinds of CVD diamond film have been prepared, and their thermal diffusivity in the perpendicular direction has been measured with this method. The measurement errors caused by the surface coating are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...