Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Sensors and Actuators B: Chemical 13 (1993), S. 209-211 
    ISSN: 0925-4005
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1070-1074 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence of Cd1−xMnxTe with x=0.25, 0.40, and 0.60 is investigated at 77 K and different pressures. The pressure coefficients of the photoluminescence bands Cd0.75Mn0.25Te and Cd0.6Mn0.4Te are found to be positive and the magnitudes are about 8×10−3 eV/kbar, which is in good agreement with the pressure coefficients of the interband transition. The pressure coefficient of the photoluminescence bands for Cd0.4Mn0.6Te is found to be −6×10−3 eV/kbar, which is quite different from the pressure coefficient of the interband transition. The possible transition mechanism is discussed in terms of group theory and crystal field theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 1439-1442 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Photoluminescence (PL) and Raman spectra of silicon nanocrystals prepared by Si ion implantion into SiO2 layers on Si substrate have been measured at room temperature. Their dependence on annealing temperature was investigated in detail. The PL peaks observed in the as-implanted sample originate from the defects in SiO2 layers caused by ion implantation. They actually disappear after thermal annealing at 800 °C. The PL peak from silicon nanocrystals was observed when thermal annealing temperatures are higher than 900 °C. The PL peak is redshifted to 1.7 eV and the intensity reaches maximum at the thermal annealing temperature of 1100 °C. The characterized Raman scattering peak of silicon nanocrystals was observed by using a right angle scattering configuration. The Raman signal related to the silicon nanocrystals appears only in the samples annealed at temperature above 900 °C. It further proves the formation of silicon nanocrystals in these samples. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2051-2054 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The room temperature Raman spectra of the hexagonal GaN epilayer grown on [111]- oriented MgAl2O4 substrate were measured in various backscattering and right angle scattering geometries. All of the symmetry—allowed optical phonon modes were observed except the E2 (low frequency) mode. The quasitransverse and quasilongitudinal modes were also observed in the x(zx)z and x(yy)z configurations, which are the mixed modes of pure transverse and longitudinal modes with A1 and E1 symmetry, respectively. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 1775-1779 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown by molecular beam epitaxy using a nitrogen radio frequency-plasma source. The PL data shows that the relative intensity of the donor-bound exciton (I2) emission to the acceptor-bound exciton (I1) emission strongly depends on both the excitation power and the temperature. This result is explained by a thermalization model of the bound exciton which involved in the capture and emission between the neutral donor bound exciton, the neutral acceptor bound exciton and the free exciton. Quantitative analysis with the proposed mechanism is in good agreement with the experimental data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 839-841 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ordered semiconductor In2O3 nanowire arrays are uniformly assembled into hexagonally ordered nanochannels of anodic alumina membranes (AAMs) by electrodeposition and oxidizing methods. Their microstructures were characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. A blue-green photoluminescence (PL) band in the wavelength range of 300–650 nm was observed in the In2O3/AAM assembly system. The PL intensity and peak position depend on the annealing temperature, which is mainly attributed to the singly ionized oxygen vacancy in the In2O3 nanowire array system. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 102-104 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1125-1127 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Highly ordered TiO2 nanowire (TN) arrays were prepared in anodic alumina membranes (AAMs) by a sol-gel method. The TNs are single crystalline anatase phase with uniform diameters around 60 nm. At room temperature, photoluminescence (PL) measurements of the TN arrays show a visible broadband with three peaks, which are located at about 425, 465, and 525 nm that are attributed to self-trapped excitons, F, and F+ centers, respectively. A model is also presented to explain the PL intensity drop-down of the TN arrays embedded in AAMs: the blue PL band of AAMs arises from the F+ centers on the pore walls, and the TNs first form in the center area of the pores and then extend to the pore walls. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 3188-3190 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Γ band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 1537-1539 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si matrices were prepared by radio frequency cosputtering deposition. Subsequent heat treatment at different temperatures ranging from 200 to 500 °C and its effects on the optical absorption of the films were investigated by spectrometry in the wavelength ranging from 200 to 1200 nm. "Surface resonance state" is introduced to discuss the broadening, blue-shift, and intensity decrease of the plasmon resonance absorption peak with decreasing Ag particle size. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...