Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 141-147 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the impact of quantum confinement and strain effects on the optical properties of state-of-the-art, densely stacked, In0.15Ga0.85As/GaAs V-groove quantum wires. High uniformity and efficient carrier capture lead to narrow (6 meV) and intense emission from the wires. Large optical polarization anisotropy is obtained thanks to the combined effects of lateral quantum confinement and triaxial strain. Band filling in the fundamental subband occurs at a modest carrier density (∼9×105 cm−1), and is accompanied by a small spectral blueshift of the emission. Several sharp excitonic resonances associated with two dimensionally confined subbands of dominant heavy-hole character are observed in photoluminescence excitation spectroscopy, together with a remarkably small Stokes shift (3 meV). The subband separations (∼24 meV) are nearly independent of the wire thickness, as the nonuniform Indium composition across the structure is found to dominate the lateral confinement for thick wires. Such strained quantum wires are promising for the realization of advanced nanostructure devices. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 3923-3925 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Cathodoluminescence spectroscopy and wavelength-dispersive imaging were employed for investigating the carrier transport and recombination in GaAs/AlGaAs inverted-pyramid quantum dot (QD) heterostructures grown on patterned (111)B GaAs substrates. The spectra and images clearly evidence carrier recombination in quantum wells and quantum wires (QWR) and show potential variations in these structures. Luminescence from the lens-shaped QDs was identified and characterized as a function of the GaAs layer thickness. Furthermore, we show a tapering of the GaAs QWR that self-forms at the corners of the pyramids. Application of such tapered QWRs as "exciton accelerators" is discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...