Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Slime moulds ; Physarum polycephalum ; Plasmodium development ; Differential gene expression ; Myosin ; Calcium-binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have measured distributions in transverse momentum and rapidity of protons from interactions of 14.6 GeV/nucleon28Si projectiles with targets of Al and Pb. The transverse momentum spectra exhibit a thermal shape with a rapidity dependent temperature parameter. For very central or violent collisions the proton rapidity distributions exhibit the large rapidity shifts and (for Si+Al) a peak at midrapidity as required for full stopping.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The Design and construction of an ultrahigh vacuum multi-imaging scanning electron microscope is described. The microscope is designed to contain two field electron emission columns and can acquire simultaneous digital images from a 16-channel electron spectrometer, a four-quadrant back-scattered electron (BSE) detector, an Si(Li) x-ray detector, a SEM detector and the current flowing to ground through the sample. Because there is exact spatial registration between corresponding pixels in each of the images, it is possible to use the image set to make quantitative interpretations of the surface and subsurface chemistry. This is done using mathematical manipulations of the image set, together with models for the SEM, BSE and Auger signals. Techniques are described for setting up the alignment and characterizing the field of view and transmission function of the microscope and its spectrometer. Examples of multi-imaging from simple samples are given. The close coupling between the microscope and its control and interpretation computers provides considerable power for the analysis of inhomogeneous surfaces.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...