Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 11 (1995), S. 619-625 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 22 (1999), S. 600-607 
    ISSN: 1476-5535
    Keywords: Keywords: endoglucanase; ethanol; Klebsiella; Erwinia; lignocellulose; biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Klebsiella oxytoca P2 was developed as a biocatalyst for the simultaneous saccharification and fermentation (SSF) of cellulose by chromosomally integrating Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. This strain contains the native ability to transport and metabolize cellobiose, eliminating the need to supplement with β-glucosidase during SSF. To increase the utility of this biocatalyst, we have now chromosomally integrated the celZ gene encoding the primary endoglucanase from Erwinia chrysanthemi. This gene was expressed at high levels by replacing the native promoter with a surrogate promoter derived from Z. mobilis DNA. With the addition of out genes encoding the type II protein secretion system from E. chrysanthemi, over half of the active endoglucanase (EGZ) was secreted into the extracellular environment. The two most active strains, SZ2(pCPP2006) and SZ6(pCPP2006), produced approximately 24 000 IU L−1 of CMCase activity, equivalent to 5% of total cellular protein. Recombinant EGZ partially depolymerized acid-swollen cellulose and allowed the production of small amounts of ethanol by SZ6(pCPP2006) without the addition of fungal cellulase. However, additional endoglucanase activities will be required to complete the depolymerization of cellulose into small soluble products which can be efficiently metabolized to ethanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 16 (1996), S. 42-47 
    ISSN: 1476-5535
    Keywords: ethanol ; E. coli ; biomass ; lignocellulose ; pentose ; hemicellulose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Hemicellulose hydrolysates of the agricultural residues bagasse, corn stover, and corn hulls plus fibers were readily fermented to ethanol by recombinantEscherichia coli strain KO11. Corn steep liquor and crude yeast autolysate served as excellent nutrients. Fermentations were substantially complete within 48 h, often achieving over 40 g ethanol L−1. Ethanol yields ranged from 86% to over 100% of the maximum theoretical yield (0.51 g ethanol g sugar−1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 16 (1996), S. 374-376 
    ISSN: 1476-5535
    Keywords: soy ; hydrolysate ; nutrient ; fermentation ; ethanol ; amino acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract An optimized soy-based medium was developed for ethanol production byEscherichia coli KO11. The medium consists of mineral salts, vitamins, crude enzymatic hydrolysate of soy and fermentable sugar. Ethanol produced after 24 h was used as an endpoint in bioassays to optimize hydrolysate preparation. Although longer fermentation times were required with soy medium than with LB medium, similar final ethanol concentrations were achieved (44–45 g ethanol L−1 from 100 g glucose L−1). The cost of materials for soy medium (excluding sugar) was estimated to be $0.003 L−1 broth, $0.006 L−1 ethanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 20 (1998), S. 281-286 
    ISSN: 1476-5535
    Keywords: Keywords: lignocellulose; biomass; fermentation; ethanol; E. coli KO11; xylose; process errors; process upsets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Escherichia coli KO11 was previously constructed for the production of ethanol from both hexose and pentose sugars in hemicellulose hydrolysates by inserting the Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). This biocatalyst appears relatively resistant to potential process errors during fermentation. Antibiotics were not required to maintain the maximum catabolic activity of KO11 even after deliberate contamination with up to 10% soil. Fermentations exposed to extremes of temperature (2 h at 5°C or 50°C) or pH (2 h at pH 3 or pH 10) recovered after re-adjustment to optimal fermentation conditions (35°C, pH6) although longer times were required for completion in most cases. Ethanol yields were not altered by exposure to extremes in temperature but were reduced by exposure to extremes in pH. Re-inoculation with 5% (by volume) from control fermentors reduced this delay after exposure to pH extremes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Gene libraries (“zoolibraries”) were constructed in Escherichia coli using DNA isolated from the mixed liquor of thermophilic, anaerobic digesters, which were in continuous operation with lignocellulosic feedstocks for over 10 years. Clones expressing cellulase and xylosidase were readily recovered from these libraries. Four clones that hydrolyzed carboxymethylcellulose and methylumbelliferyl-β-d-cellobiopyranoside were characterized. All four cellulases exhibited temperature optima (60–65° C) and pH optima (pH 6–7) in accordance with conditions of the enrichment. The DNA sequence of the insert in one clone (plasmid pFGH1) was determined. This plasmid encoded an endoglucanase (celA) and part of a putative β-glucosidase (celB), both of which were distinctly different from all previously reported homologues. CelA protein shared limited homology with members of the A3 subfamily of cellulases, being similar to endoglucanase C from Clostridium thermocellum (40% identity). The N-terminal part of CelB protein was most similar to β-glucosidase from Pseudomonas fluorescens subsp. cellulosa (28% homology). The use of zoolibraries constructed from natural or laboratory enrichment cultures offers the potential to discover many new enzymes for biotechnological applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1998
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Symptomatic splenic hamartomas are rare in the pediatric age group, with only four previous reports in the literature. Splenic hamartoma has been reported as a solid homogeneous mass without calcification on CT and ultrasound (US), and only one previous report of the findings on MRI has been published. We report a case of a large symptomatic splenic hamartoma in a 14-year-old girl who presented with splenomegaly, pancytopenia and growth retardation. A solid mass with multiple punctate foci resembling calcifications was seen on US. The mass was heterogeneous and better demarcated on enhanced CT. Radiocolloid scintigraphy demonstrated uptake within the lesion, but less than that of normal spleen. The mass was isointense relative to normal splenic tissue on T1-weighted MRI (0.5 T) and of increased intensity with T2 weighting. At splenectomy, a red pulp hamartoma was identified, which contained nodules of hyalinization and necrosis thought to account for the punctate foci seen on US.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 70-75 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 g l-1 ethanol from 120 g l-1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 70-75 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl−1 ethanol from 120 gl−1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Gene libraries (“zoolibraries”) were constructed in Escherichia coli using DNA isolated from the mixed liquor of thermophilic, anaerobic digesters, which were in continuous operation with lignocellulosic feedstocks for over 10 years. Clones expressing cellulase and xylosidase were readily recovered from these libraries. Four clones that hydrolyzed carboxymethylcellulose and methylumbelliferyl-β-D-cellobiopyranoside were characterized. All four cellulases exhibited temperature optima (60–65 °C) and pH optima (pH 6–7) in accordance with conditions of the enrichment. The DNA sequence of the insert in one clone (plasmid pFGH1) was determined. This plasmid encoded an endoglucanase (celA) and part of a putative β-glucosidase (celB), both of which were distinctly different from all previously reported homologues. CelA protein shared limited homology with members of the A3 subfamily of cellulases, being similar to endoglucanase C from Clostridium thermocellum (40% identity). The N-terminal part of CelB protein was most similar to β-glucosidase from Pseudomonas fluorescens subsp. cellulosa (28% homology). The use of zoolibraries constructed from natural or laboratory enrichment cultures offers the potential to discover many new enzymes for biotechnological applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...