Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 235 (1984), S. 347-356 
    ISSN: 1432-0878
    Keywords: Blastocyst ; Ultrastructure ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Between days 8 and 11 of pregnancy spherical blastocysts from 0.3 to 10 mm in diameter were flushed from the uterine horns of Dutch Landrace pigs. A description of their ultrastructure is given, and the uptake of horseradish peroxidase and ferritin is demonstrated. The ultrastructure of the trophoblast was similar at all ages studied. The trophoblast which has many apical microvilli is able to take up and digest the macromolecules which were offered in the in vitro incubation medium. The hypoblast consists of flattened cells. In blastocysts 2 mm and larger, compact cells bearing microvilli are found below the embryoblast. Cell organelles indicating protein synthesis are found within hypoblast cells of such blastocysts. In the embryoblast, local concentrations of cell organelles are visible, indicating that differentiation has started. After the disappearance of Rauber's layer, which takes place when the blastocyst reaches a diameter of about 2 mm, superficial embryoblast cells develop short microvilli. The cells do not absorb ferritin or peroxidase but are dependent on the trophoblast for their food requirements. All cell layers in the blastocyst contain mitochondria that have characteristics of those found in steroidproducing cells. The significance of the uptake and digestion of macromolecules by trophoblast cells, the synthesis of protein by hypoblast cells and the possible synthesis of steroids is discussed with respect to the relationship between the cell layers of the blastocyst and in the context of conceptomaternal relationships.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Development ; Enterocytes ; Fish ; Mitosis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The processes of proliferation, cell division and differentiation of intestinal epithelial cells have been studied during development of the fish, Barbus conchonius. On the 3rd day, nearly all cells of the presumptive gut proliferate. Once the intestinal epithelium begins to differentiate, a decreasing percentage of proliferative cells can be found. On the 7th day, when intestinal folds start to develop, the proliferative cells become restricted to the future basal parts of the folds. Ultrastructural examination of 3H-thymidine-labeled cells and mitotic cells of 6-day-old larvae shows that functional enterocytes are proliferative. The same feature is suggested for older fish. Proliferating undifferentiated “dark” cells, characterized by many free ribosomes and a few organelles, are also present in the intestinal epithelium of larval fish; they are considered to be stem cells, mainly for goblet cells. Proliferating goblet cells and enteroendocrine cells were not observed. The latter cell type is scarce and has a long turnover time. A common feature of all these dividing cells is the presence of isolated spherical to cylindrical lamellar structures which may have lost contact with the cell membrane during prophase; they probably regain this contact by fusion with the cell membrane at the end of mitosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 215 (1981), S. 397-415 
    ISSN: 1432-0878
    Keywords: Stomach ; Epithelium ; Teleost ; Development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The development of the stomach of the teleost, Clarias lazera, during the early posthatching period, is described, and the developing stomach is compared with that of adult Clarias. The stomach develops in two distinct parts: the corpus, which differentiates first, and the pylorus. The corpus contains a mucous surface epithelium, arranged in folds, and a tubular gland system containing only one type of gland cell, to which the secretion of pepsinogen and HCl is attributed. The pyloric region does not contain tubular glands. From the ultrastructure of the gland cells, the 3H-thymidine labeling index, and the onset of acid production (as determined with pH indicators) it is concluded that a functional stomach is present in juveniles with a standard length of ± 11 mm (approximately 12 days after fertilization at 23–24° C). The ultrastructure of the intestinal epithelium has also been studied. The intestine consists of three segments, similar to those described for stomachless teleosts and a number of fish larvae. In larvae as well as in juveniles, the enterocytes of the second segment show pinocytosis of horseradish peroxidase, although in the juveniles the stomach has already developed. This second segment has the same relative length in all studied larvae and juveniles and is also present in adult Clarias. It is therefore concluded that the capacity to absorb protein macromolecules is not specifically related to the absence of a functional stomach in this teleost species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...