Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (3)
  • Cutaneous vasodilation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 19 (1977), S. 1785-1792 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lactate dehydrogenase (EC 1.1.1.27) has been immobilized in polyacrylamide gels over a platinum grid matrix. The immobilized enzyme is used to oxidize L-lactate in the presence of nicotinamide adenine dinucleotide (NAD+) and femcyanide. The NADH produced is then chemically oxidized back to NAD+by ferricyanide. The coupled reduction of ferricyanide ions to ferrocyanide ions results in a measurable electrochemical potential. This measurable zero-current potential is found to be Nernstian in nature and directly proportional to the logarithm values of L-Iactate concentration over the range of 2 × 10-5to 5 × 10-2M. The results indicate that immobilized lactate dehydrogenase can be incorporated into a system to detect L-Lactate acid in aqueous solutions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 1905-1915 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two coenzyme-dependent oxidoreductases, glucose dehydrogenase and alcohol dehydrogenase, were immobilized in polyacrylamide gel over a platinum grid matrix and used as enzyme electrodes to measure their substrate concentrations in buffered aqueous solutions. The immobilized enzymes were used to oxidize their substrates in the presence of NAD+. Ferricyanide was used as the redox mediator and electroactive specific. The determinations of glucose and ethenol were utilized to demonstrate and evaluate the performance of the system. The described methodology should be readily applicable to the analysis of numerous other substrates of coenzyme-dependent oxidoreductases.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 971-975 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glycerol dehydrogenase was immobilized in polyacrylamide gel layered over a small platinum screen and used to catalyze the oxidation of glycerol. In the presence of NAD+ and potassium ferricyanide, the coupling reaction generated a measurable electrical potential which was found to be Nernstian with respect to the glycerol concentration range of 10-4M to 10-1M. The reproducibility of the measurement and the optimal conditions for glycerol determination were described.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 76 (1997), S. 116-121 
    ISSN: 1439-6327
    Keywords: Key words Warm-water immersion ; Esophageal temperature ; Cutaneous vasodilation ; Thermoregulation ; Heat loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We demonstrated previously that esophageal temperature (T es) remains elevated by ≈0.5°C for at least 65 min after intense exercise. Following exercise, average skin temperature (T avg) and skin blood flow returned rapidly to pre-exercise values even though T es remained elevated, indicating that the T es threshold for vasodilation is elevated during this period. The present study evaluates the hypothesis that the threshold for sweating is also increased following intense exercise. Four males and three females were immersed in water (water temperature, T w = 42°C) until onset of sweating (Immersion 1), followed by recovery in air (air temperature, T a = 24°C). At a T a of 24°C, 15 min of cycle ergometry (70% VO2max) (Exercise) was then followed by 30 min of recovery. Subjects were then immersed again (T w = 42°C) until onset of sweating (Immersion 2). Baseline T es and T skavg were 37.0 (0.1)°C and 32.3 (0.3)°C, respectively. Because the T skavg at the onset of sweating was different during Exercise [30.9 (0.3)°C] than during Immersion 1 and Immersion 2 [36.8 (0.2)°C and 36.4 (0.2)°C, respectively] a corrected core temperature, T es (calculated), was calculated at a single designated skin temperature, T sk(designated), as follows: T es(calculated) = T es + [β/(1−β)][T skavg−T sk(designated)]. The T sk(designated) was set at 36.5°C (mean of Immersion 1 and Immersion 2 conditions) and β represents the fractional contribution of T skavg to the sweating response (β for sweating = 0.1). While T es(calculated) at the onset of sweating was significantly lower during exercise [36.7 (0.2)°C] than during Immersion 1 [37.1 (0.1)°C], the threshold of sweating during Immersion 2 [37.3 (0.1)°C] was greater than during both Exercise and Immersion 1 (P 〈 0.05). We conclude that intense exercise decreases the sweating threshold during exercise itself, but elicits a subsequent short-term increase in the resting sweating threshold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...