Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 1 (1961), S. 199-213 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The chromium complex is chemically bonded by ion exchange with alkali cations to strongly acidic sites in the glass surface. These sites are formed by the isomorphous replacement of silicon by boron and aluminum in the network structure. Polymerized complexes are better bonding agents than monomeric ones. Specific interactions between organic groups on the chrome complex and the bonding resins also determine laminate strength and water resistance.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 16 (1976), S. 229-234 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This article describes a new experimental and analytical method for determining the specific heat and thermal coductivity of plastic materials. This method arrives at these temperature-dependent properties by analyzing the thermal history of a slab of the plastic material. The procedure is as follows: 1) A partial differential equation model of the heat flow through the slab is established a priori. 2) A varying heat flux is a applied to the slab, and temperature readings throughout the plastic are recorded at fixed time intervals. 3) This temperature data is fed into a digital computer (along with the established mathematical model) and the required specific heat and thermal conductivity values are extracted. The extraction is done by using the maximum likelihood system identification technique.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 1151-1155 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An improved macroscopic model for predicting the strength of a composite laminate containing a circular notch is developed. Two constants are introduced which uniquely determine the notch sensitivity of a given material. A superposition method for the notched strength of composite laminates is developed which allows data for arbitrary materials and laminate configurations to be superimposed upon a single master curve. The influence of material orthotropy upon notched strength is discussed. A relative notch sensitivity parameter is introduced which allows quantification of the notch sensitivity of a given composite material system, stacking sequence, or laminate configuration.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 346-353 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dielectric data from an epoxy resin system were used as the foundation for dielectric modeling of the curing process. This resin system (DGEBA-polyamide) was chosen as an easily processible model system. Dielectric average relaxation times, defined as the reciprocal of the angular frequency at which the loss component of the dielectric constant reaches a maximum, were determined for a 40°C isothermal cure. The changes in the average relaxation time through the cure exhibited similar behavior to those for viscosity, which inspired the correlation of the two properties. The dielectric relaxation time was modeled using a six-parameter model analogous to that used for viscosity. The model parameters were in turn associated with both intrinsic properties of the system and reaction kinetics describing the cure. The possibility of extending the relaxation time model for use with single-frequency data by means of a time-frequency correlation was also investigated. Combined, these two modeling methodologies provide a powerful constitutive approach for describing dielectric properties of thermosetting polymers during cure.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 620-631 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A study to investigate fusion bonding (welding) of AS4 graphite/polyetheretherketone (PEEK) thermoplastic composites is presented. Processing studies are conducted for resistance welding preconsolidated AS4/PEEK laminates in both unidirectional and quasi-isotropic configurations using PEEK and polyetherimide (PEI) film at the joint interface. All bonding was done under a constant displacement process. The influence of processing time, initially applied consolidation pressure, and the rate of heat generation on weld performance is examined through lap shear and Mode I interlaminar fracture toughness testing. A rapid increase in strength with processing time that asymptotically approaches the compression molded baseline is measured. Weld times for quasi-isotropic lap shear coupons are significantly shorter than those with a unidirectional lay-up. Variation of the initially applied consolidation pressure is shown to have little influence on the lap shear strength of PEEK film welded lap joints. A discussion of the mechanisms allowing void formation during the welding process is given. Bond strength test results are correlated with ultrasonic C-scans of the weld regions.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 260-265 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Penrose states that quantum effects can occur even in relatively large systems when energy differences remain small. This is just the situation with polymer materials. A quantum description by Penrose of the formation of quasi-crystals can be rewritten to apply to polymer crystallization. The implications of the need to take account of quantum effects are discussed. Another approach based on the quantization of energy levels in clusters of atoms offers a possible explanation of heat setting in nylon and polyester fibers. Finally some problems of the interpretation of quantum theory are discussed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 1257-1263 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A micromechanics theory is outlined for predicting the elastic and thermoelastic properties of dispersed, short fiber systems. This micromechanics theory is then applied to the prediction of macroscopic thermal residual stresses in a poly(etheretherketone). (PEEK)-glass. Fiber system, in an effort to determine the influence of crystallinity on residual stress development.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 959-973 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The interaction between a winter flounder antifreeze polypeptide and an ice/water interface was studied using Molecular Dynamics computer simulation techniques to study the mechanism of action of this class of antifreeze molecules. Simple Point Charge models were used for the water molecules, and a molecular mechanics program (CHARMM) was used to construct the model for the polypeptide. A (2021) face was exposed on the ice surface, as this is believed to be the experimentally favored ice face for peptide binding. The polypeptide binds strongly to the ice surface even though it was placed with its four polar threonine (Thr) groups pointing away from the ice surface. This tested the previously advanced hypothesis that adsorption occurs primarily between these groups and the ice due to a matching of the spacing between oxygen atoms in the ice lattice and the polar Thr residues. As well as contacts with other polar groups on the peptide, the binding to the ice produces a good steric fit of the peptide with the corrugated ice interface. The presence of the peptide did not induce any melting of the ice at 200 K.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 2153-2156 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 1649-1655 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Forced-convection mass transfer at the metal/bath interface during aluminum reduction from cryolitic melts was studied under reproducible convective conditions. A film of molten aluminum on a rotating molybdenum cylinder was the cathode. Concentration overpotential measured as a function of rotation rate, current density, and bath composition was converted to concentration differences between the bulk and the metal surface. Chosen as the basis for calculation of a mass transfer coefficient was the concentration of aluminum fluoride given by: \documentclass{article}\pagestyle{empty}\begin{document}$$ C_{{\rm AlF}_{\rm 3} } = \frac{{2\rho (100 - Al_2 {\rm O}_3 \% - {\rm CaF}_2 \% - IMP\%)}}{{100M_{{\rm AlF}_3} (CR + 2)}} $$\end{document} where the amounts of indicated compounds are in weight percent, IMP designates impurities, M is molecular weight, ρ is the density of the melt, and CR is the cryolite ratio, the ratio of moles NaF to moles AlF3. Agreement with a correlation for mass transfer to a rotating cylinder allowed the calculation of effective diffusivities for aluminum fluoride species, in alumina-saturated melts, of: 11.1 ± 1.1 × 10-5 cm2/s at 1.8 CR; 11.4 ± 1.7 × 10-5 cm2/s at 2.3 CR; 5.4 ± 0.8 × 10-5 cm2/s at 3.0 CR; and 4.4 ± 0.9 × 10-5 cm2/s at 4.0 CR.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...