Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1439-6327
    Schlagwort(e): Exercise ; Induced hypoxemia ; Incremental exercise ; Trained athletes ; Arterial oxyhemoglobin saturation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Recent evidence suggests that exercise-induced hypoxemia (EIH) may occur in healthy trained endurance athletes. However, at present, no data exist to describe the regularity of EIH in athletes or non-athletes. Therefore, the purpose of the present investigation was to determine the incidence of EIH during exercise in healthy subjects varying in physical fitness. Subjects (N=68) performed an incremental cycle ergometer test to volitional fatigue with percent arterial oxyhemoglobin saturation (%SaO2) measured min-by-min. For the purpose of data analysis subjects were divided into three groups according to their level of physical training: 1) untrained (N=16), 2) moderately trained (N=27), and 3) elite highly trained endurance athletes (N=25). EIH was defined as a %SaO2 of ≤91% during exercise. EIH did not occur in any of the untrained subjects or the moderately trained subjects. However, EIH occurred in 52% of the highly trained endurance athletes tested and was highly reproducible (r=0.95; P〈0.05). These findings further confirm the existence of EIH in healthy highly trained endurance athletes and suggests a rather high incidence of EIH in this healthy population. Hence, it is important that the clinician or physiologist performing exercise testing in elite endurance athletes recognize that EIH can and does occur in the elite endurance athlete in the absence of lung disease.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1439-6327
    Schlagwort(e): Electrolytes ; Fluid balance ; Glucose ; Exercise metabolism ; Blood pH
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The purpose of these experiments was to examine the influence of various fluid replacement drinks on exercise-induced disturbances in homeostasis during heavy exercise. Nine trained cyclists performed constant load exercise on a cycle ergometer to fatigue on three occasions with 1-week separating experiments. The work rate was set initially at ∼ 85% of $$\dot V_{o_{2{\text{ }}max} } $$ (range 82–88%) with fatigue being defined as a 10% decline in power output below the initial value. During each experiment subjects consumed one of the following three beverages prior to and every 15 min during exercise: (1) non-electrolyte placebo (NEP; 31 mosmol · kg−1); (2) glucose polymer drink containing electrolytes (GP; 7% CHO, 231 mosmol · kg−1), and (3) electrolyte placebo drink without carbohydrate (EP; 48 mosmol · kg−1). Both the GP and EP beverage contained sodium citrate/citric acid (C) as a flavoring agent while C was not contained in the NEP drink. Although seven of nine subjects worked longer during the GP and EP treatment when compared with the NEP trial, the difference was not significant (P〉0.05). No differences (P〉0.05) existed between the GP and EP treatments in performance time. Exercise changes in rectal temperature, heart rate, Δ % plasma volume and plasma concentrations of total protein, free fatty acids, glucose, lactate, potassium, chloride, calcium, and sodium did not differ (P〉0.05) between trials. In contrast, blood hydrogen ion concentration [H+] was significantly lower (P〈0.05) at 30 min of exercise during the GP and EP treatment when compared with the NEP run. These data provide evidence that electrolyte drinks do not minimize exercise-induced disturbances in blood-electrolyte concentrations during heavy execrcise when compared with nonelectrolyte drinks; however, these results suggest that fluid replacement beverages containing buffers (i.e. C) and/or electrolytes may minimize blood alterations in [H+] during intense exercise. Additional research is required to determine if the buffering influence of these beverages has an ergogenic benefit during heavy exercise.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...