Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 83-84 
    ISSN: 1432-0983
    Keywords: DNA isolation ; Agarose gels ; Molecular cloning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present a simple method for the isolation of DNA from agarose gels that is economic, fast, and independent of electrical equipment. DNA fragments of up to 6 kb can be easily extracted within 5 min using a disposable plastic syringe and filter paper. Total extraction of DNA fragments between 10 and 20 kb in size is achieved by concentrating the DNA flushed from the gel in a DNA-binding column.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Yeast ; Molecular cloning ; Nitrogen mustard hyper-resistance ; Choline transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The recessive hnm1 mutant allele is responsible for hyper-resistance to nitrogen mustard in Saccharomyces cerevisiae. Transformation with a single-copy HNM1 wild-type allele of such hyper-resistant mutants will restore wild-type sensitivity to nitrogen mustard. By contrast the presence of multi-copy vectors containing HNM1, in either a hyper-resistant hnm1 mutant or an HNM1 wild-type, will lead to a novel, mustard-sensitive phenotype unrelated to defects in DNA repair genes. Gene disruption of HNM1 revealed that this gene is nonessential for cells prototrophic for choline (CHO1) but lethal for cells with a cho1 genotype. Sensitivity to nitrogen mustard of wild-type HNM1, but not of hnm1 mutants, depends on the choline content of the growth medium, with cells grown in choline-free medium exhibiting the highest sensitivity. Sequencing of a 300 bp DNA fragment of HNM1 revealed the identity of this gene with the CTR locus, which is responsible for choline transport in Saccharomyces cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...