Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 157 (1983), S. 344-349 
    ISSN: 1432-2048
    Keywords: Glycinebetaine ; Ion, inorganic (distribution) ; Salt tolerance ; Shoot (solutes) ; Solute distribution ; Suaeda
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The distribution of sodium, potassium and glycinebetaine in shoot tissues of salt-treated Suaeda maritima was examined by semi-micro techniques after extraction into toluene-water. Much higher K/Na ratios were observed in the apical regions and in axillary buds than in more mature, fully vacuolated tissues. The younger tissues also contained very high levels of glycinebetaine. Electron-probe X-ray microanalysis of bulkfrozen and fractured preparations showed higher K/Na ratios and higher levels of sulphur and phosphorus in the cytoplasm of leaf primordial cells than in vacuoles of either young or old leaves, although the total counts were higher in the vacuolar samples. The results are discussed in relation to current models of subcellular solute compartmentation and salt tolerance in the Chenopodiaceae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 82 (1991), S. 729 
    ISSN: 1432-2242
    Keywords: Triticum ; K/Na discrimination ; Salt tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A number of accessions of the three species of diploid wheat, Triticum boeoticum, T. monococcum, and T. urartu, were grown in 50 mol m-3 NaCl+2.5 mol m-3 CaCl2. Sodium accumulation in the leaves was low and potassium concentrations remained high. This was not the case in T. durum grown under the same conditions, and indicates the presence in diploid wheats of the enhanced K/Na discrimination character which has previously been found in Aegilops squarrosa and hexaploid wheat. None of the accessions of diploid wheat showed poor K/Na discrimination, which suggests that if the A genome of modern tetraploid wheats was derived from a diploid Triticum species, then the enhanced K/Na discrimination character became altered after the formation of the original allopolyploid. Another possibility is that a diploid wheat that did not have the enhanced K/Na discrimination character was involved in the hybridization event which produced tetraploid wheat, and that this diploid is now extinct or has not yet been discovered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Triticum ; Na+ exclusion ; K+/Na+ ratio ; Salt tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 89 (1985), S. 15-40 
    ISSN: 1573-5036
    Keywords: Elytrigia ; Epicuticular waxes ; Halophytes ; Leymus ; Potassium ; Roots ; Salt tolerance ; Shoots ; Sodium ; Transpiration ; Triticum ; Water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In the first part of this review the main features of salt tolerance in higher plants are discussed. The hypothesis of intracellular compartmentation of solutes is used as a basis for models of tolerance mechanisms operating in roots and in leaves. Consideration is given to the implications of the various mechanisms for the yield potential of salt-tolerant crop plants. Some work on the more salt-tolerant members of the Triticeae is then described. The perennial speciesElytrigia juncea andLeymus sabulosus survive prolonged exposure to 250 mol m−3 NaCl, whereas the annual Triticum species are severely affected at only 100 mol m−3 NaCl. In the perennial species the tissue ion levels are controlled within narrow limits. In contrast, the more susceptible wheats accumulate far more sodium and chloride than is needed for osmotic adjustment, and the effects of salt stress increase with time of exposure. Two different types of salt tolerance are exhibited in plants capable of growing at high salinities. In succulent Chenopodiaceae, for example, osmotic adjustment is achieved mainly by accumulation of high levels of sodium and chloride in the shoots, accompanied by synthesis of substantial amounts of the compatible solute glycinebetaine. This combination of mechanisms allows high growth rates, in terms of both fresh and dry weight. At the opposite end of the spectrum of salt tolerance responses are the halophytic grasses, which strictly limit the influx of salts into the shoots, but suffer from very much reduced growth rates under saline conditions. Another variation is shown in those species that possess salt glands. The development and exploitation of crop plants for use on saline soils is discussed in relation to the implications of these various mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...