Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 29 (1996), S. 437-440 
    ISSN: 1432-0983
    Keywords: Yeast ; Formaldehyde ; Hyper-resistance ; Alcohol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In an attempt to clone genes involved in resistance to formaldehyde we have screened a genomic library based on the episomal plasmid YEp24 for the ability to increase resistance to formaldehyde in a wild-type strain. In addition toSFA, the gene encoding the formaldehyde dehydrogenase Adh5, an enzyme most potent in formaldehyde de-toxification, we isolated a second plasmid that conferred a less pronounced but significant hyper-resistance to formaldehyde. Its passenger DNA contained the geneADH1, encoding alcohol dehydrogenase 1 (EC 1.1.1.1), which could be shown to be responsible for the observed hyper-resistance phenotype. Construction of anadh1-0 mutant revealed that yeast lacking a functionalADH1 gene is sensitive to formaldehyde. While glutathione is essential for Adh5-mediated formaldehyde de-toxification, Adh1 reduced formaldehyde best in the absence of this thiol compound. Evidence is presented that formaldehyde is a substrate for Adh1 in vivo and in vitro and that its cellular de-toxification employs a reductive step that may yield methanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Yeast ; Base sequence ; Gene disruption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A multi-copy plasmid containing the SNQ3 gene confers hyper-resistance to 4-nitroquinoline-N-oxide (4NQO), Trenimon, MNNG, cycloheximide, and to sulfometuron methyl in yeast transformants. Restriction analysis, subcloning, and DNA sequencing revealed an open reading frame of 1950 bp on the SNQ3-containing insert DNA. Gene disruption and transplacement into chromosomal DNA yielded 4NQO-sensitive null mutants which were also more sensitive than the wild-type to Trenimon, cycloheximide, sulfometuron methyl, and MNNG. Hydropathic analysis showed that the SNQ3-encoded protein is most likely not membrane-bound, while the codon bias index points to low expression of the gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Small GTP-binding proteins ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence analysis upstream of the yeast DNA repair gene SNM1 revealed gene GTP1 with an ORF of 573 bp on chromosome XIII. The putative amino-acid sequence of the encoded protein shows homology to proteins of the ARF-class of small GTP-binding proteins. Homology within GTP-binding motifs is highly conserved. Gene disruption showed that GTP1 is not an essential gene and that it has no influence on the expression of the DNA repair gene SNM1 with which it shares a 191-bp promoter region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Yeast ; Thermoconditional DNA repair ; Mutagenesis ; Allelism test
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Of two mutant genes (snm1-2 ts and snm2-1 ts) conferring thermoconditional mutagen sensitivity in Saccharomyces cerevisiae one (snm2-1 ts) is shown to be centromere-linked. At the restrictive temperature this allele reduces UV-induced back mutation frequency of the ochre allele hiss-2 but has no influence on forward mutation at the CAN1 locus. Complementation tests and recombination analysis revealed snm2 ts to be allelic with rad5 (rev2).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: Yeast ; Molecular cloning ; Nitrogen mustard hyper-resistance ; Choline transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The recessive hnm1 mutant allele is responsible for hyper-resistance to nitrogen mustard in Saccharomyces cerevisiae. Transformation with a single-copy HNM1 wild-type allele of such hyper-resistant mutants will restore wild-type sensitivity to nitrogen mustard. By contrast the presence of multi-copy vectors containing HNM1, in either a hyper-resistant hnm1 mutant or an HNM1 wild-type, will lead to a novel, mustard-sensitive phenotype unrelated to defects in DNA repair genes. Gene disruption of HNM1 revealed that this gene is nonessential for cells prototrophic for choline (CHO1) but lethal for cells with a cho1 genotype. Sensitivity to nitrogen mustard of wild-type HNM1, but not of hnm1 mutants, depends on the choline content of the growth medium, with cells grown in choline-free medium exhibiting the highest sensitivity. Sequencing of a 300 bp DNA fragment of HNM1 revealed the identity of this gene with the CTR locus, which is responsible for choline transport in Saccharomyces cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 335-336 
    ISSN: 1432-0983
    Keywords: Yeast ; Rapid transformation ; Cell age
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present a simplified and rapid method for the transformation of yeast cells by electroporation. Stationary cells, scraped off the agar of Petri dish cultures stored in the refrigerator for up to 6 weeks, are suspended in sorbitol buffer, spun down by gentle centrifugation, transferred into the electroporation cuvette, and immediately subjected to transformation via electroporation. Transformation efficiency of this 10-min method, which does not require the preparation of cell cultures, is about 10% of the hitherto best performing transformation procedure using cells of defined growth phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0983
    Keywords: Platinum compounds ; Yeast ; Repair mutants ; Interstrand cross-links ; DNA degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Four haploid yeast strains differing in proficiency for DNA repair were treated with cis- or transDDP. The wild type was least sensitive while the excision-deficient mutants rad1, rad2 and snm1exhibited higher sensitivities to either platinum compound. In all four strains tested cisDDP showed a two- to five-fold higher cytotoxicity than equimolar concentrations of transDDP. DNA interstrand cross-linking was caused by both agents in all strains. However, transDDP introduced more DNA cross-links at exposure times up to 6 h while cisDDP was the more active cross-linking agent at longer times. There was no clear-cut correlation of the number of DNA interstrand cross-links with survival. Formaldehyde-treated cells showed DNA with lower buoyant density due to proteinase K sensitive DNA-protein cross-linking; this effect was not observed after treatment with either platinum compound. Post-treatment incubation of wild-type cells exposed to cisDDP led to degradation of DNA by single and double-strand breaks, parallel with further increase of DNA interstrand cross-linking. DNA from transDDP-treated cells did not show extensive degradation although interstrand cross-links were lost during liquid holding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: Yeast ; GSH ; DNA alkylation ; MNNG
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The MNNG hyper-resistance of yeast transformants containing multiple copies of the SNQ3/YAP1 yeast gene is not caused by lowered MNNG activation due to depleted pools of glutathione. On the contrary, the SNQ3/YAP1-encoded protein stimulates production of GSH, apparently by promoter activation due to the AP-1 recognition element. Expression of at least one further gene, encoding a protein with a strong detoxifying activity, must also be stimulated to explain the MNNG hyper-resistance phenotype.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1617-4623
    Keywords: Mutagen hyper-resistance ; 4-nitroquinolineN-oxide ; Yeast ; ATP-dependent permease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The yeast gene SNQ2 confers hyper-resistance to the mutagens 4-nitroquinoline-N-oxide (4-NQO) and Triaziquone, as well as to the chemicals sulphomethuron methyl and phenanthroline when present in multiple copies in transformants of Saccharomyces cerevisiae. Subcloning and sequencing of a 5.5 kb yeast DNA fragment revealed that SNQ2 has an open reading frame of 4.5 kb. The putative encoded polypeptide of 1501 amino acids has a predicted molecular weight of 169 kDa and has several hydrophobic regions. Northern analysis showed a transcript of 5.5 kb. Haploid cells with a disrupted SNQ2 reading frame are viable. The SNQ2-encoded protein has domains believed to be involved in ATP binding and is likely to be membrane associated. It most probably serves as an ATP-dependent permease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1617-4623
    Keywords: Mutagen resistance ; Yeast ; Formaldehyde ; 4-Nitroquinoline-N-oxide ; Multi-copy plasmids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hyperresistance to 4-nitroquinoline-N-oxide (4-NQO) and formaldehyde (FA) of yeast strains transformed with the multi-copy plasmids pAR172 and pAR184, respectively, is due to the two genes, SNQ and SFA, which are present on these plasmids. Restriction analysis revealed the maximal size of SFA as 2.7 kb and of SNQ as 2.2 kb, including transcription control elements. The presence of the smallest 2.7 kb subclone carrying SFA increased hyperresistance to formaldehyde fivefold over that of the original pAR184 isolate. No such increase in hyperresistance to 4-NQO was seen with the smaller subclones of the pAR172 isolate. Disruption of the SFA gene led to a threefold increase in sensitivity to FA as compared with the wild type. Expression of gene SNQ introduced on a multi-copy vector into haploid yeast mutants rad2, rad3, and snm1 did not complement these mutations that block excision repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...