Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5060
    Keywords: biosafety ; gene inactivation ; phosphinothricin tolerance gene ; transgenic Brassica napus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The commercial and economic value of genetically modified crops is determined by a predictable, consistent and stable transmission and expression of the transgenes in successive generations. No gene inactivation is expected after selfings or crosses with non-transformed plants of homozygous transgenic oilseed rape plants if the expression of the transgene in homozygous or hemizygous nature in such plants is stable. The segregation ratios of phosphinothricin (PPT) tolerance in successive generations of selfings and mutual crosses of a few independent transgenic PPT-tolerant oilseed rape plants indicated a dominant, monogenic inheritance. In within-variety and between-variety crosses no transgene inactivation was observed. However, after selfings and backcrosses with non-transgenic oilseed rape infrequent loss of the expression of the PPT tolerance transgene was observed independent from its homozygous or hemizygous nature. Molecular analysis of PPT-susceptible plants showed that the loss of expression was due to gene inactivation and not to the absence of the transgene. Methylation and co-suppression are mechanisms that might cause reduced or even loss of expression of the transgene in later generations. The implications of this observation for seed multiplication of varieties and breeding activities with transgenic oilseed rape are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transgenic research 7 (1998), S. 157-163 
    ISSN: 1573-9368
    Keywords: biosafety ; Escherichia coli ; familiarity ; genetic modification ; β-glucuronidase (GUS) ; substantial equivalence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The β-glucuronidase (GUS) gene is to date the most frequently used reporter gene in plants. Marketing of crops containing this gene requires prior evaluation of their biosafety. To aid such evaluations of the GUS gene, irrespective of the plant into which the gene has been introduced, the ecological and toxicological aspects of the gene and gene product have been examined. GUS activity is found in many bacterial species, is common in all tissues of vertebrates and is also present in organisms of various invertebrate taxa. The transgenic GUS originates from the enterobacterial species Escherichia coli that is widespread in the vertebrate intestine, and in soil and water ecosystems. Any GUS activity added to the ecosystem through genetically modified plants will be of no or minor influence. Selective advantages to genetically modified plants that posses and express the E. coli GUS transgene are unlikely. No increase of weediness of E. coli GUS expressing crop plants, or wild relatives that might have received the transgene through outcrossing, is expected. Since E. coli GUS naturally occurs ubiquitously in the digestive tract of consumers, its presence in food and feed from genetically modified plants is unlikely to cause any harm. E. coli GUS in genetically modified plants and their products can be regarded as safe for the environment and consumers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...