Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 863-874 
    ISSN: 0006-3592
    Keywords: plant cell suspension cultures ; chemostat culture ; growth kinetics ; stoichiometry ; Catharanthus roseus ; Nicotiana tabacum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Plant cell suspension cultures of Catharanthus roseus and Nicotiana tabacum were grown in stirred tank bioreactors operated in batch and continuous mode. The stoichiometry of growth of both species in steady-state glucose limited chemostats was studied at a range of different dilution rates. A linear relation was applied to describe specific glucose uptake, oxygen consumption, and carbon dioxide production as a function of the growth rate. Specific respiration deviated greatly from the linear relation. An unstructured mathematical model, based on the observed stoichiometry in the glucose limited chemostats, was applied to describe the growth in batch culture. From a comparison between the observed growth pattern in batch fermentors and computer simulations it appeared that the stoichiometry of growth of the C. roseus culture was different under steady-state and dynamic conditions. It was concluded that a mathematical model for the growth of suspension culture plant cells in which the biomass is considered to be a single compound with an average chemical composition is of limited value because large changes in the conmposition of the biomass may occur. © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 837-848 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; metabolic models ; stoichiometry ; polyphosphate ; poly-β-hydroxybutyrate ; glycogen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the aerobic phase of the biological phosphorus removal process, poly-β-hydroxybutyrate, produced during anaerobic conditions, is used for cell growth, phosphate uptake, and glycogen formation. A metabolic model of this process has been developed. The yields for growth, polyphosphate and glycogen formation are quantified using the coupling of all these conversions to the oxygen consumption. The uptake of phosphate and storage as polyphosphate is shown to have a direct effect on the observed oxygen consumption in the aerobic phase. The overall energy requirements for the P-metabolism are substantial: 25% of the acetate consumed during anaerobic conditions and 60% of the oxygen consumptions is used for the synthesis of polyphosphate and glycogen. © 1994 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 461-470 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; metabolic model ; stoichiometry ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the anaerobic phase of a biological phosphorus removal process, acetate is taken up and converted to PHB utilizing both energy generated in the degradation of polyphosphate to phosphate, which is released, and energy generated in the conversion of glycogen to poly-β-hydroxy butyrate (PHB). The phosphate/acetate ratio cannot be considered a metabolic constant, because the energy requirement for the uptake of acetate is strongly influenced by the pH value. The observed phosphate/acetate ratio shows a variation of 0.25 to 0.75 P-mol/C-mol in a pH range of 5.5 to 8.5. It is shown that stored glycogen takes part in the metabolism to provide reduction equivalents and energy for the conversion of acetate to PHB. A structured metabolic model, based on glycogen as the source of the reduction equivalents in the anaerobic phase and the effect of the pH on the energy requirement of the uptake of acetate, is developed. The model explains the experimental results satisfactorily. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 681-698 
    ISSN: 0006-3592
    Keywords: stoichiometry ; biomass yield ; product yield ; metabolic fluxes ; Saccharomyces cerevisiae ; Candida utilis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Using available biochemical information, metabolic networks have been constructed to describe the biochemistry of growth of Saccharomyces cerevisiae and Candida utilis on a wide variety of carbon substrates. All networks contained only two fitted parameters, the P/O ratio and a maintenance coefficient. It is shown that with a growth-associated maintenance coefficient, K, of 1.37 mol ATP/ C-mol protein for both yeasts and P/O ratios of 1.20 and 1.53 for S. cerevisiae and C. utilis, respectively, measured biomass yields could be described accurately. A metabolic flux analysis of aerobic growth of S. cerevisiae on glucose/ethanol mixtures predicted five different metabolic flux regimes upon transition from 100% glucose to 100% ethanol. The metabolic network constructed for growth of S. cerevisiae on glucose was applied to perform a theoretical exercise on the overproduction of amino acids. It is shown that theoretical operational product yield values can be substantially lower than calculated maximum product yields. A practical case of lysine production was analyzed with respect to theoretical bottlenecks limiting product formation. Predictions of network-derived irreversibility limits for Ysp (μ) functions were compared with literature data. The comparisons show that in real systems such irreversibility constraints may be of relevance. It is concluded that analysis of metabolic network stoichiometry is a useful tool to detect metabolic limits and to guide process intensification studies. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 133-138 
    ISSN: 0006-3592
    Keywords: metabolic modeling ; model selection ; parameter estimation ; identification ; yeast ; stoichiometry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A metabolic network model is one of the cornerstones of the emerging Metabolic Engineering methodology. In this article, special attention is therefore, given to the phase of model building. A five-stage structured approach to metabolic network modeling is introduced. The basic steps are: (1) to collect a priori knowledge on the reaction network and to build candidate network models, (2) to perform an a priori check of the model, (3) to estimate the unknown parameters in the model, (4) to check the identified model for acceptability from a biological and thermodynamic point of view, and (5) to validate the model with new data. The approach is illustrated with a growth system involving baker's yeast growing on mixtures of substrates. Special attention is given to the central uncertainties in metabolic network modeling, i.e., estimation of energetic parameters in the network and the choice of the source of anabolic reducing equivalents NADPH. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:133-138, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 685-695 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; denitrifying dephosphatation ; stoichiometry ; metabolic model ; sequencing batch reactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A metabolic model for biological phosphorus removal under denitrifying conditions has been established. The model is based on previous work with aerobic phosphorus removal. The form of the kinetic equations used is the same as for the aerobic model. The main difference is the value of P/NADH2 ratio in the electron transport phosphorylation with nitrate (δN). This value was determined independently from batch tests with an enriched culture of denitrifying phosphorus-removing bacteria. The measured δN was approximately 1.0 mol ATP/mol NADH2. This indicates that the energy production efficiency with nitrate compared to oxygen is approximately 40% lower. These batch tests were also used to identify a proper set of kinetic parameters. The obtained model was subsequently applied for the simulation of cyclic behavior in an anaerobic-anoxic sequencing batch reactor at different biomass retention times. The simulation results showed that the metabolic model can be used successfully for the denitrifying dephosphatation process. The obtained kinetic parameters for denitrifying enrichment cultures, however, deviated from those obtained for the aerobic enrichment cultures. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...