Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 459 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 219 (1968), S. 1082-1082 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In spite of the wide use of these techniques in studies which involve a delay between collection of the marrow cells and reinjection, little attention has been given to the effect of temperature, storage and suspending media on the viability of CFUs. A series of determinations was therefore made to ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 17 (1979), S. 1-28 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary Although the overall aim of radiobiology is to understand the biological effects of radiation, it also has the implied practical purpose of developing rational measures for the control of radiation exposure in man. The emphasis in this presentation is to show that the enormous effort expended over the years to develop quantitative dose-effect relations relationships in biochemical and cellular systems, animals and human beings, now seems to be paying off. The pieces appear to be falling into place, and a framework is evolving to utilize these data. Specifically, quantitative risk assessments will be discussed in terms of the cellular, animal and human data on which they are based; their use in the development of radiation protection standards; and their present and potential impact and meaning in relation to the quantity dose equivalent and its special unit, the rem. Recent neutron carcinogenesis data in man are evaluated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 18 (1980), S. 157-183 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary These studies have addressed firstly the effect of single small doses of x-rays upon murine hematopoietic stem cells to obtain a better estimate of theD q . It is small, of the order of 20 rad. Secondly, a dose fractionation schedule that does not kill or perturb the kinetics of hemopoietic cell proliferation was sought in order to investigate the leukemogenic potential of low level radiation upon an unperturbed hemopoietic system. Doses used by others in past radiation leukemogenesis studies clearly perturb hemopoiesis and kill a detectable fraction of stem cells. The studies reported herein show that 1.25 rad every day decrease the CFU-S content of bone marrow by the time 80 rads are accumulated. Higher daily doses as used in published studies on radiation leukemogenesis produce greater effects. Studies on the effect of 0.5, 1.0, 2.0, and 3.0 rad 3 times per week are under way. Two rad 3 times per week produced a modest decrease in CFU-S content of bone marrow after an accumulation of 68 rad. With 3.0 rad 3 times per week an accumulation of 102 rad produced a significant decrease in CFU-S content of bone marrow. Dose fractionation at 0.5 and 1.0 rad 3 times per week has not produced a CFU-S depression after accumulation of 17 and 34 rad. Radiation leukemogenesis studies published to date have utilized single doses and chronic exposure schedules that probably have significantly perturbed the kinetics of hematopoietic stem cells. Whether radiation will produce leukemia in animal models with dose schedules that do not perturb kinetics of hematopoietic stem cells remains to be seen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 26 (1987), S. 253-261 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary Absorbed doseD is shown to be a composite variable, the product of the fraction of cells hit (I H ) and the mean “dose” (hit size)z to those cells.D is suitable for use with high level exposure (HLE) to radiation and its resulting acute organ effects because, sinceI H = 1.0, it approximates closely enough the mean energy density in the cell as well as in the organ. However, with low level exposure (LLE) to radiation and its consequent probability of cancer induction from a single cell, stochastic delivery of energy to cells results in a wide distribution of hit sizesz, and the expected mean value,z, is constant with exposure. Thus, with LLE, onlyI H varies withD so that the apparent proportionality between “dose” and the fraction of cells transformed is misleading. This proportionality therefore does not mean that any (cell) dose, no matter how small, can be lethal. Rather, it means that, in the exposure of a population of individual organisms consisting of the constituent relevant cells, there is a small probability of particle-cell interactions which transfer energy. The probability of a cell transforming and initiating a cancer can only be greater than zero if the hit size (“dose”) to the cell is large enough. Otherwise stated, if the “dose” is defined at the proper level of biological organization, namely, the cell and not the organ, only a large dosez to that cell is effective.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...