Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-1106
    Keywords: Inhibition ; Hippocampal formation ; Development ; GABAergic neurons ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glutamate decarboxylase (GAD)-positive and Golgi impregnated local circuit neurons of the hippocampal formation of five day old rats were examined in light and electron microscopic preparations. The ultrastructural features of these neurons were similar in both the dentate gyrus and CA1 area of Ammon's horn. Somata displayed a perikaryal cytoplasm rich in organelles but lacked organized Nissl bodies. Most nuclei showed intranuclear infoldings of varying degrees but no intranuclear sheets or rods were found. Somata and dendrites were contacted by relatively immature axon terminals that formed mainly symmetric synapses. The axons of local circuit neurons in both the dentate gyrus and Ammon's horn formed symmetric synapses with somata and dendrites of the principal neurons in these regions. Thus, both GAD-positive and Golgi-impregnated terminals of local circuit neurons were observed to form synapses with pyramidal and granule cells. These terminals were usually small and contained relatively few pleomorphic synaptic vesicles. The results show that a circuitry for inhibition is established in the 5 day old dentate gyrus and Ammon's horn, even though the local circuit neurons lack some of the typical adult ultrastructural features at this age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 75 (1989), S. 327-334 
    ISSN: 1432-1106
    Keywords: HRP-intracellular staining ; Hippocampal slice ; CA3 pyramidal neurons ; Dentate granule cells ; Input synapses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study describes the fine structure of input synapses on identified neurons in slices of the guinea pig hippocampus. For morphological identification, granule cells of the fascia dentata and pyramidal neurons of regio inferior of the hippocampus were impaled and intracellularly stained with horse-radish peroxidase (HRP). Input synapses on the HRP-stained neurons were identified in the electron microscope by the location of the synapses in inner or outer zones of the dentate molecular layer, as in the case of the synaptic contacts on injected granule cells, or by unique fine structural characteristics, as in the case of the giant mossy fiber boutons on CA3 pyramidal cells. As in tissue fixed in situ by transcardial perfusion, a large number of terminals arising from the different afferents in inner and outer zones of the dentate molecular layer were well preserved and formed synaptic contacts with small spines, large complex spines, and dendritic shafts of the HRP-filled granule cells. Mossy fiber synapses on the stained CA3 neurons were densely filled with clear vesicles, contained a few dense-core vesicles, and formed synaptic contacts with large spines or excrescences. Occasionally electrondense degenerating boutons were also found impinging on the stained dendrites and spines. The significance of the present findings for electrophysiological and pharmacological studies on brain slices is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-1106
    Keywords: Hippocampal mossy fibers ; GABAergicneurons ; GABAergic inhibition ; EM immunocytochemistry ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mossy fibers are known to form excitatory synapses on pyramidal neurons in regio inferior of the hippocampus. This study demonstrates that the mossy fibers also establish synaptic contacts with glutamate decarboxylase-immunoreactive, supposedly GABAergic inhibitory neurons in the CA3 region. The observed connection provides a morphological basis for feed-forward inhibition of the pyramidal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 88 (1988), S. 313-319 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary This study describes the catecholaminergic innervation of rat hippocampal neurons at the electron microscopic level by using an antibody against tyrosine hydroxylase (TH) and immunocytochemical techniques. In a first series of experiments, the course and distribution as well as the synaptic contacts of TH-immunoreactive fibers were analyzed with the peroxidase-antiperoxidase (PAP) method. Next, peroxidase immunostaining of TH fibers was combined with glutamate decarboxylase (GAD) immunostaining, using avidinated ferritin as a second electrondense marker. Our results demonstrate that TH-immunostained terminals establish asymmetric synaptic contacts with spines of pyramidal neurons, and symmetric synaptic contacts with cell bodies and dendritic shafts of ferritin-labeled GAD-immunoreactive nonpyramidal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 88 (1988), S. 343-352 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Electronmicroscopic immunocytochemical analysis of the types and patterns of synaptic contacts formed by cholecystokinin (CCK)-containing terminals in the CA1 and CA3 region of the rat and monkey hippocampus reveals numerous symmetric synaptic contacts on cell bodies and dendritic shafts of pyramidal cells in both species. In the monkey, however, CCK-immunoreactive terminals also form asymmetric synaptic contacts with dendritic spines, such contacts are absent or very rare in the rat hippocampus. The present finding in primate hippocampus provides evidence that the same neuropeptides can be found in both symmetric and asymmetric contacts and may be added to other evidence challenging the traditional concept that symmetric synapses mediate exclusively inhibitory and asymmetric exclusively excitatory transmission. Furthermore, although our comparative analysis confirms considerable similarities in the distribution of CCK-containing elements in primate and rodent hippocampus it also revealed a potentially important difference in synaptoarchitecture that should be taken into account in extrapolations from one species to the other.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Oligodendrocytes in the rat hippocampusin situ and in organotypic slice cultures were studied by light and electron microscopic immunocytochemistry using the monoclonal Rip antibody. Our results confirm that this antibody exclusively stains oligodendrocytes, while astrocytes and neurons are not labelled. In the light microscope, immunopositive cells had the appearance of myelinating oligodendrocytes with their characteristic tubular processes. In the electron microscope, stained cells showed intimate contacts with myelin sheaths but not with the basal laminae of endothelial cells. Rip-positive oligodendrocytes were unevenly distributed in the adult rat hippocampal formation. In general, they were abundant in layers known to contain many afferent and efferent fibres. In the hippocampus proper, there was a particularly strong immunolabelling of stratum radiatum of field CA2. In the fascia dentata, the hilar region displayed a high cell density, especially in the vicinity of the granule cell layer. A similar distribution of immunopositive cells was found in young animals (15–18 days old); however, the density of labelled cells was lower, particularly in the hilus. Immunolabelled cells in slice cultures of hippocampus displayed the characteristics of myelinating oligodendrocytes. Moreover, they showed an organotypic distribution, although afferent and efferent fibre projections normally myelinated by these cells were absent under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 20 (1991), S. 915-928 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study describes non-granule cells in the fascia dentata of rhesus monkeys and baboons. Their cell bodies are located in the molecular layer and at the hilar border of the granular layer. They are called basket cells since their axons give rise to collaterals that branch in the close vicinity of the parent cell body and form symmetric synapses with dendrites and cell bodies of granule cells. These neurons are further classified with regard to the shape and location of their cell bodies and the orientation of their dendrites. Basket cells in the molecular layer are mainly bipolar with dendrites oriented perpendicular to the granular layer. These dendrites are densely innervated by presynaptic boutons forming asymmetric synapses. We have rarely observed molecular layer basket cells with dendrites traversing the granular layer and invading the hilus. We thus conclude that these cells are mainly activated by extrinsic afferents terminating in the molecular layer. Basket cells at the hilar border display pyramidal, fusiform or multipolar cell bodies that give rise to apical dendrites traversing the molecular layer and basal dendrites invading the hilar region. Large boutons establish asymmetric synapses with identified basal dendrites of these neurons. The dendrites of all types of basket cell are smooth, i.e. they had few or no spines. Many of them display varicosities. Cell counts in Cresyl Violet-stained sections revealed a ratio of basket cells to granule cells of 1:500. Essentially, the types of basket cell in the monkey fascia dentata are similar to those described previously for the rat. This contrasts sharply to our recent findings for pyramidal neurons and granule cells of the monkey hippocampus which showed an increased complexity and variability when compared with rodents. These data do not support the hypothesis that only local circuit neurons evolve in phylogeny.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 286 (1996), S. 293-303 
    ISSN: 1432-0878
    Keywords: Key words: Phaseolus vulgaris leucoagglutinin ; Anterograde tracing ; Entorhinal cortex ; Crossed temporo-ammonic pathway ; Crossed temporo-dentate pathway ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Neurons of the entorhinal cortex project to the hippocampus proper and dentate gyrus. This projection is called the ”perforant pathway” because it perforates the subiculum; current usage applies this term to all entorhino-hippocampal fibers. However, entorhinal fibers also reach Ammon’s horn via the alveus (”alvear pathway”), an alternative route first described by Cajal. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) was used in order to analyze the contribution of this pathway to the temporo-ammonic projection. In the temporal portion of the rat hippocampus, most of the entorhinal fibers reach Ammon’s horn after perforating the subiculum (classical perforant pathway). At more septal levels, the number of entorhinal fibers that take the alvear pathway increases; in the septal portion of the hippocampal formation, most of the entorhinal fibers to hippocampal subfield CA1 reach this subfield via the alveus. These fibers make sharp right-angle turns in the alveus, perforate the pyramidal cell layer, and finally terminate in the stratum lacunosum-moleculare. The crossed temporo-ammonic fibers reach their termination area in the stratum lacunosum-moleculare of CA1 almost exclusively via the alveus. These data indicate that the alveus is a major route by which entorhinal fibers reach their targets in CA1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 23 (1992), S. 306-323 
    ISSN: 1059-910X
    Keywords: Section Golgi impregnation ; Cholinergic synapses ; Neuronal specificity ; Neural transplantation ; Slice culture ; Neuronal plasticity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: In this study the Golgi/electron microscopy (EM) technique has been used for an analysis of the fine structure, specific synaptic connections, and differentiation of neurons in the hippocampus and fascia dentata of rodents. In a first series of experiments the specific synaptic contacts formed between cholinergic terminals and identified hippocampal neurons were studied. By means of a variant of the section Golgi impregnation procedure, Vibratome sections immunostained for choline acetyltransferase, the acetylcholine-synthesizing enzyme, were Golgi-impregnated in order to identify the target neurons of cholinergic terminals in the hippocampus. It could be shown with this combined approach that cholinergic septohippocampal fibers form a variety of synapses with different target structures of the Golgi-impregnated and gold-toned hippocampal neurons. In this report cholinergic synapses on the heads of small spines, the necks of large complex spines, dendritic shafts, and cell bodies of identified dentate granule cells are described. The variety of cholinergic synapses suggests that cholinergic transmission in the fascia dentata is a complex event.Next, the Golgi/EM technique was applied to Vibratome sections that contained retrogradely labeled neurons in the hilar region of the fascia dentata following horseradish peroxidase (HRP) injection into the contralateral hippocampus. With this combined approach some of the hilar cells projecting to the contralateral side were identified as mossy cells by the presence of retrogradely transported HRP in thin sections through these Golgi-impregnated and gold-toned neurons. Our findings suggest that the mossy cells are part of the commissural/associational system terminating in the inner molecular layer of the fascia dentata. They are mainly driven by hilar collaterals of granule cell axons that form giant synapses on their dendrites.Finally, the Golgi/EM procedure was used to study the differentiation and developmental plasticity of hippocampal and dentate neurons in transplants and slice cultures of hippocampus. Under both experimental conditions, the differentiating neurons are deprived of their normal laminated afferent innervation but develop their major cell-specific characteristics including a large number of postsynaptic structures (spines). As revealed in thin sections of gold-toned identified cells, all these spines formed synapses with presynaptic boutons suggesting sprouting of the transplanted and cultured neurons, respectively.Altogether, the present report demonstrates the usefulness of the Golgi/EM technique, particularly of the section impregnation procedure, for a variety of studies requiring the identification of individual neurons at the ultrastructural level. © 1992 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...