Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2020-08-05
    Description: Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where $1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$. Several combinatorial problems reduce to a linear optimization problem over $K$. This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a completely positive representation of $K$. We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: Let G be a directed acyclic graph with n arcs, a source s and a sink t. We introduce the cone K of flow matrices, which is a polyhedral cone generated by the matrices $\vec{1}_P\vec{1}_P^T\in\RR^{n\times n}$, where $\vec{1}_P\in\RR^n$ is the incidence vector of the (s,t)-path P. We show that several hard flow (or path) optimization problems, that cannot be solved by using the standard arc-representation of a flow, reduce to a linear optimization problem over $\mathcal{K}$. This cone is intractable: we prove that the membership problem associated to $\mathcal{K}$ is NP-complete. However, the affine hull of this cone admits a nice description, and we give an algorithm which computes in polynomial-time the decomposition of a matrix $X\in \operatorname{span} \mathcal{K}$ as a linear combination of some $\vec{1}_P\vec{1}_P^T$'s. Then, we provide two convergent approximation hierarchies, one of them based on a completely positive representation of~K. We illustrate this approach by computing bounds for the quadratic shortest path problem, as well as a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: Let G be a directed acyclic graph with n arcs, a source s and a sink t. We introduce the cone K of flow matrices, which is a polyhedral cone generated by the matrices $\vec{1}_P\vec{1}_P^T\in\RR^{n\times n}$, where $\vec{1}_P\in\RR^n$ is the incidence vector of the (s,t)-path P. We show that several hard flow (or path) optimization problems, that cannot be solved by using the standard arc-representation of a flow, reduce to a linear optimization problem over $\mathcal{K}$. This cone is intractable: we prove that the membership problem associated to $\mathcal{K}$ is NP-complete. However, the affine hull of this cone admits a nice description, and we give an algorithm which computes in polynomial-time the decomposition of a matrix $X\in \operatorname{span} \mathcal{K}$ as a linear combination of some $\vec{1}_P\vec{1}_P^T$'s. Then, we provide two convergent approximation hierarchies, one of them based on a completely positive representation of~K. We illustrate this approach by computing bounds for the quadratic shortest path problem, as well as a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where $1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$. Several combinatorial problems reduce to a linear optimization problem over $K$. This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a completely positive representation of $K$. We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...