Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Key words Sheep cardiac Purkinje fibre ; Voltage-clamp ; Pacemaker current ; Use dependence ; Specific bradycardic agent ; ZD 7288
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhibition of the pacemaker current (i f) in sheep cardiac Purkinje fibres by ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride] is lost use-dependently. This disinhibition of i f was investigated by using the two-microelectrode voltage-clamp technique. The pulse protocol consisted of a rest period (holding potential of about –50 mV, 1–10 μmol/l ZD 7288) followed by a train of test pulses (potential negative to –100 mV, stimulation frequency 0.05 Hz). At the beginning of the first test pulse there was an immediate reduction of i f but inhibition was lost during continued stimulation. Activation of i f is sigmoidal and the early delay in current activation was prolonged from 33 ms (no ZD 7288) to 424 ms (10 μmol/l ZD 7288). Therefore hardly any disinhibition occurred during short test pulses (0.5 s). During longer test pulses (5 s, –120 mV, 10 μmol/l) disinhibition developed with a time constant of about 2 s. The inhibition of i f by ZD 7288 was lost voltage-dependently. With 10 μmol/l ZD 7288 the half-maximal disinhibition occurred at –92 mV and the slope factor of the disinhibition/voltage curve (Boltzmann relation) was 4.8 mV. The voltage-dependent disinhibition could be abolished largely by extracellular application of protease (0.5 mg/ml, 7 min). After prior disinhibition, reinhibition at the holding potential (about –50 mV) followed a bi-exponential time course indicating that inhibition may be produced by a fast (τ=0.7 min) and a slow component (τ=20–30 min). Increasing ZD 7288 concentration from 1 to 10 μmol/l accelerated reinhibition, mainly by an increase of the amplitude (A) of the fast component. The ratio A fast/A slow was 0.399 at 1 μmol/l and 2.65 at 10 μmol/l ZD 7288. The reinhibition of i f was unchanged by shifting the holding potential from –50 mV to –20 mV. Trials to wash out the effects of 10 μmol/l ZD 7288 gave two results. The inhibition of i f was slightly reversed after a wash-out of 1.5 h with drug-free solution. A second effect of the drug, the fast reinhibition, could be completely removed by wash-out. In summary i f is inhibited by ZD 7288 at membrane potentials at which the virtual i f gate is closed. Disinhibition occurs during long-lasting hyperpolarization but will hardly be operative in unclamped fibres under physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 353 (1995), S. 64-72 
    ISSN: 1432-1912
    Keywords: Sheep cardiac Purkinje fibre ; Voltage-clamp ; Pacemaker current ; Use dependence ; Specific bradycardic agent ; ZD 7288
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhibition of the pacemaker current (i f) in sheep cardiac Purkinje fibres by ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride] is lost use-dependently. This disinhibition of i f was investigated by using the two-microelectrode voltage-clamp technique. The pulse protocol consisted of a rest period (holding potential of about -50 mV, 1–10 μmol/l ZD 7288) followed by a train of test pulses (potential negative to -100 mV, stimulation frequency 0.05 Hz). At the beginning of the first test pulse there was an immediate reduction of i f but inhibition was lost during continued stimulation. Activation of i f is sigmoidal and the early delay in current activation was prolonged from 33 ms (no ZD 7288) to 424 ms (10 μmol/l ZD 7288). Therefore hardly any disinhibition occurred during short test pulses (0.5 s). During longer test pulses (5 s, -120 mV, 10 μmol/l) disinhibition developed with a time constant of about 2 s. The inhibition of i f by ZD 7288 was lost voltage-dependently. With 10 μmol/l ZD 7288 the half-maximal disinhibition occurred at -92 mV and the slope factor of the disinhibition/voltage curve (Boltzmann relation) was 4.8 mV. The voltage-dependent disinhibition could be abolished largely by extracellular application of protease (0.5 mg/ml, 7 min). After prior disinhibition, reinhibition at the holding potential (about -50 mV) followed a bi-exponential time course indicating that inhibition may be produced by a fast (τ=0.7 min) and a slow component (τ=20–30 min). Increasing ZD 7288 concentration from 1 to 10 μmol/l accelerated reinhibition, mainly by an increase of the amplitude (A) of the fast component. The ratio A fast/A sIow was 0.399 at 1 μmol/l and 2.65 at 10 μmol/1 ZD 7288. The reinhibition of i f was unchanged by shifting the holding potential from -50 mV to -20 mV Trials to wash out the effects of 10 μmol/l ZD 7288 gave two results. The inhibition of i f was slightly reversed after a wash-out of 1.5 h with drug-free solution. A second effect of the drug, the fast reinhibition, could be completely removed by washout. In summary i f is inhibited by ZD 7288 at membrane potentials at which the virtual i f gate is closed. Disinhibition occurs during long-lasting hyperpolarization but will hardly be operative in unclamped fibres under physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...