Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (pe) maxima near the divertor X point in L-mode plasmas in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E×B circulation about the X point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, although preliminary and incomplete, suggest that E×B circulation across the separatrix might be a common feature of low confinement behavior. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ*, β and ν scalings of heat transport indicate that E×B transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χeff∝q2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τth∝q−2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τth∝q95−1.43±0.23. This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (ne≤1021 m−3, 0.5 eV≤Te). D2 gas injection in the divertor increases the plasma radiation and lowers Te to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion–neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3–5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in Te. Uniformity of radiated power (Prad) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an ad hoc chemical sputtering source (0.5%) from the private flux region surface are used. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This paper describes the design and operation of a 40 spatial channel Thomson scattering system that uses multiple 20-Hz Nd:YAG lasers to measure the electron temperature and density profiles periodically throughout an entire plasma discharge. As many as eight lasers may be fired alternately for an average measurement frequency of 160 Hz, or they may be fired in rapid succession (〈10 kHz), producing a burst of pulses for measuring transient events. The high spatial resolution (1.3 cm) and wide dynamic range (10 eV–20 keV) enable this system to resolve large electron density and temperature gradients formed at the plasma edge and in the scrape-off layer during H-mode operation. These features provide a formidable tool for studying L–H transitions, edge localized modes (ELMs), beta limits, transport, and disruptions in an efficient manner suitable for large tokamak operation where shot-to-shot scans are impractical. The scattered light is dispersed by interference filter polychromators and detected by silicon avalanche photodiodes. Laser control and data acquisition are performed in real time by a VME-based microcomputer. Data analysis is performed by a MicroVAX 3400. Additional features of this system include real-time analysis capability, full statistical treatment of error bars based on the measured background light, and laser beam quality and alignment monitoring during plasma operation. Results of component testing, calibration, plasma operation, and error analysis are presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A seven channel polychromator, utilizing high performance interference filters (transmission (approximately-greater-than)80%, rejection at laser wavelength〉105), has been tested for use in the multi-Nd:YAG laser Thomson scattering system for the DIII-D tokamak. Unique features of this polychromator are the combination of high throughput, easy alignment, flexibility, compact size, and low cost when compared with other alternatives. Light is introduced to the polychromator (f/1.75) via a fiber optic bundle which permits the use of small (3.0 cm diam) optics and leads to a compact (44×24×8 cm) design, an important design consideration for multiple polychromator systems. The light is cascaded through a series of different bandpass interference filters and relay lenses which are mounted on two precision parallel rails in such a way that alignment is trivial. The relay lenses are positioned directly in front of the filters so that light reflected from the filter passes through the lens twice. This leads to an efficient, compact design and reduces the angle of incidence (4 °) and the cone angle of light (4.5 °) seen by the filter, an important factor for narrowband (3.0 nm) filters. The transmission (average 70%) was optimized for 700–1100 nm by using broadband coatings throughout. The output images of each channel (2.3 mm. diam) can be directly coupled to large format (3 mm diam) RCA silicon avalanche photodiode detectors, avoiding the losses caused by fiber optic coupling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A VME-based real-time computer system for laser control, data acquisition, and analysis for the DIII-D multipulse Thomson scattering diagnostic is described. The laser control task requires precise timing of up to eight Nd:YAG lasers, each with an average firing rate of 20 Hz. A cpu module in a real-time multiprocessing computer system will operate the lasers with evenly staggered laser pulses or in a "burst mode,'' where all available (fully charged) lasers can be fired at 50–100 μs intervals upon receipt of an external event trigger signal. One or more cpu modules, along with a LeCroy FERA (fast encoding and readout ADC) system, will perform real-time data acquisition and analysis. Partial electron temperature and density profiles will be available for plasma feedback control within 1 ms following each laser pulse. The VME-based computer system consists of two or more target processor modules (25 MHz Motorola 68030) running the VMEexec real-time operating system connected to a Unix-based host system (also a 68030). All real-time software is fully interrupt driven to maximize system efficiency. Operator interaction and (non-real-time) data analysis takes place on a MicroVAX 3400 connected via DECnet.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The paradigm of shear suppression of turbulence as the mechanism for the low to high confinement mode (L to H) transition is examined by quantitative comparison of the predictions of the paradigm with experimental results from the DIII-D tokamak [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159]. The L to H transition trigger is V×B rotation, not the main ion pressure gradient. The radial electric field Er shear increases before the fluctuation suppression, consistent with increasing Er shear as the cause of the turbulence suppression. The spatial dependence of the turbulence reduction is consistent with shear suppression for negative Er shear. For positive Er shear, the turbulence suppression is consistent with the effect of Er curvature for modes for which an Er well is destabilizing. Finally, the transport barrier depends on the phase angle between the density and potential fluctuations inside the Er well, an effect not included in existing L to H transition models. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1867-1874 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A series of scaling studies attempting to correlate the H(high)-mode power threshold (PTH) with global parameters have been conducted. Data from these discharges is also being used to look for dependence of PTH on local edge parameters and to test theories of the transition. Boronization and better operational techniques have resulted in lower-power thresholds and weaker density scaling. Neon impurity injection experiments show that radiation also plays a role in determining PTH. A low-density threshold for the L(low)–H(high) transition has been linked with the locked mode low-density limit, and can be reduced with the use of an error field correcting coil. Highly developed edge diagnostics, with spatial resolution as low as 5 mm, are used to evaluate how the power threshold depends on local edge conditions. Preliminary analysis of local edge conditions for parameter scans of ne, BT, and Ip in single-null discharges, and the X-point imbalance in double-null discharges show that, just before the transition to the H mode, the edge temperatures near the separatrix are approximately constant at 100〈Ti〈220 eV and 35〈Te〈130 eV, even though the threshold power varied from 1.5 to 14 MW. During a density scan, the edge ion collisionality, ν*i, varied from 2 to 17, demonstrating that a transition condition as simple as ν*i=const is inconsistent with the data. The local edge parameters of ne, Te, and Ti do not always follow the same global scaling as PTH. Therefore, theories of the L–H transition need not be constrained by these scalings. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 694-694 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Line density measurements on ITER are expected to be provided by a conventional vibration-compensated CO2 laser interferometer. This type of interferometer relies on maintaining an accurate measurement of hundreds of vibration fringes during the entire time history of the plasma. Because of the very long pulse lengths (1000 s) and the possibility of fringe counting errors, a second method that measures the Faraday rotation of a laser beam with a tangential laser beam path through the plasma will be used to provide a history-independent measurement of the line density with somewhat reduced accuracy. These two measurements can be accomplished in a combined interferometer/polarimeter system that uses a single CO2 laser and detector. We have constructed a prototype of this type of system, which uses two acousto-optic modulators to generate two beams, shifted from the laser frequency by 40 and 45 MHz. These probe beams are converted to left- and right-hand circular polarization and combined into a single probe beam. Vibrations are simulated by moving a mirror in the reference beam path, and the Faraday rotation is simulated by rotating the linear polarized probe beam. Frequency analysis of the interference signal from a single detector is used to separate the phase of the interferometer and the phase of the polarization rotation. Limits on the phase resolution of the two methods and possible sources of error will be presented. ©1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 490-492 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd:YAG 20-Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fulfill varying plasma physics requirements. Custom circuitry for laser control (programmable with 1 μs precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst mode is useful to study a transient plasma event: a series of laser pulses are fired at a rate ≤10 kHz after an external asynchronous event trigger. Burst mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group mode allows a programmed set of lasers to fire simultaneously into the same (65 ns) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...