Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The IFEF database (Indicators of Forest Ecosystem Functioning), consisting of nitrogen deposition, nitrate leaching fluxes, and soil and ecosystem characteristics, is analysed to evaluate the C/N ratio in the organic horizon as an indicator of nitrate leaching. One hundred and eighty one forests are examined, from countries across Europe ranging from boreal to Mediterranean regions, encompassing broadleaf and coniferous sites and plot and catchment studies. N input in throughfall ranges from less than 1 kg N ha−1 y−1 in northern Norway and Finland to greater than 60 kg N ha−1 y−1 in the Netherlands and Czech Republic. The amount of NO3– leached covers a smaller range, between 1 and 40 kg N ha−1 y−1. Nitrate leaching is strongly dependent on the amount of nitrogen deposited in throughfall (N input) and simply adding the C/N ratio in the organic horizon to a regression equation does not improve this relationship. However, when the data are stratified based on C/N ratios less than or equal to 25 and greater than 25, highly significant relationships (P 〈 0.05) are observed between N input and NO3– leached. The slope of the relationship for those sites where C/N ratio is  ≤ 25 (′nitrogen enriched′ sites) is twice that for those sites where C/N ratio is 〉 25. These empirical relationships may be used to identify which forested ecosystems are likely to show elevated rates of nitrate leaching under predicted future nitrogen deposition scenarios. Elevated NO3– leaching also shows a relationship with soil pH, with high rates of NO3– leaching only observed at sites with a pH 〈 4.5 and N inputs 〉 30 kg N ha−1 y−1. Tree age and species have no significant impact on the ecosystem response to N input at a regional scale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Geoderma 64 (1994), S. 21-39 
    ISSN: 0016-7061
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Socio-Economic Planning Sciences 10 (1976), S. 101-106 
    ISSN: 0038-0121
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Sociology , Economics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 46 (1995), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The predicted activity of Al in the soil solutions of acid forest soils often differs from that observed in the field. We have investigated the influence of soil structure and flow rate of the soil solution on the aluminum release to explain this divergence. Disturbed and undisturbed samples of soil were collected from the A and B horizons of a dystric cambisol at Waldstein (Fichtelgebirge, Germany). The samples were irrigated with solutions mixed according to field data on throughfall or soil solution composition with pH 3.5 with flow rates of 4 mm d−1, 12 mm d−1 and 36 mm d−1. The percolates were analysed for major ions. Resulting relations between pH and pAl were compared with batch experiments. In neither the A horizon nor in the B horizon did soil structure influence the relation between pH and pAl. The apparent equilibrium between pH and pAl was described as the pKapp value with pKapp= pAl—a pH (where a is an empirical constant). It was found that the pKapp values for the column percolates were in the range of variation of those found in batch experiments.Flow rate had no influence on pKapp at 4 and 12 mm d−1. At 36 mm d−1 a significant increase of pKapp was observed. This relative undersaturation of Al was more pronounced in the A horizon than in the B horizon. When flow is fast Al release into the percolating soil solution might be limited by diffusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Organotin compounds (OTC) are deposited from the atmosphere into terrestrial ecosystems and can accumulate in soils. We studied the adsorption and desorption of methyltin and butyltin compounds in organic and mineral soils in batch experiments. The adsorption and desorption isotherms for all species and soils were linear over the concentration range of 10–100 ng Sn ml−1. The strength of OTC adsorption correlated well with the carbon content and cation exchange capacity of the soil and was in the order mono- 〉 di- 〉 tri-substituted OTCs and butyltin 〉 methyltin compounds. The OTC adsorption coefficients were much larger in organic soils (Kd 〉 104) than in mineral soils. The adsorption and desorption showed a pronounced hysteresis. Trimethyltin adsorption was partly reversible in all soils (desorption 2–12% of the adsorbed amounts). Dimethyltin, tributyltin and dibutyltin exhibited reversible adsorption only in mineral soils (desorption 4–33% of the adsorbed amounts). Mono-substituted OTCs adsorbed almost irreversibly in all soils (desorption 〈 1% of adsorbed amounts). Trimethyltin was more mobile and more bioavailable in soils than other OTCs. It might therefore be leached from soils and accumulate in aquatic ecosystems. The other OTCs are scarcely mobile and are strongly retained in soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 54 (2003), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Aluminium (Al) is abundant in soils, but the influence of Al on the mineralization of dissolved organic carbon and thus on carbon sequestration in soil is only poorly understood. We investigated the extent and rate of mineralization of dissolved organic carbon at various Al/C ratios.Dissolved organic carbon extracted from Oi and Oa layers under coniferous and deciduous forest was incubated with initial molar Al/C ratios from 〈 0.004 to 0.44 for 130 days. Mineralization was quantified by measurement of CO2. Rapidly and slowly mineralizable pools of dissolved organic C and their decomposition rate constants and half-lives (as a measure of labile and stable C) were modelled with a double exponential equation.Increasing initial Al/C ratios up to 0.1 led to a considerable decrease in mineralization (up to 50% compared with control samples). The half-life of the stable C pool increased up to 4-fold, whereas the half-life of the labile C pool was unaffected. Ratios of Al/C 〉 0.1 did not further decrease the mineralization, but led to increasing concentrations of free Al3+ in solution, and to increasing Al/C ratios in the precipitate, indicating that the Al complexation capacity of dissolved organic C was exceeded. Decrease in mineralization as well as formation of particulate organic matter (up to 56% of initial dissolved organic C) affected mainly the stable pool. Mineralization of dissolved organic C can be predicted from UV absorption by use of exponential regressions, but adding an Al variable did not improve the prediction significantly.We conclude that Al influences substantially the biodegradability of dissolved organic C percolating into the mineral soil, which may have consequences for the carbon sequestration in the soil. Declining Al concentrations would increase the mineralization of dissolved organic C only if the Al/C ratio becomes less than the ‘threshold value’ in the range of the Al complexation capacity of the dissolved organic C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Dissolved organic nitrogen and carbon (DOC) are significant in the C and N cycle in terrestrial ecosystems. Little is known about their dynamics in the field and the factors regulating their concentrations and fluxes. We followed the fluxes and concentrations of the two in a Norway spruce (Picea abies (L.) Karst.) forest ecosystem in Germany from 1995 to 1997 by sampling at fortnightly intervals. Bulk precipitation, throughfall, forest floor percolates from different horizons and soil solutions from different depths were analysed for major ions, dissolved organic N and DOC. The largest fluxes and concentrations were observed in percolates of the Oi layer, which contain amino N and amino sugar N as the major components. The average ratio of dissolved organic C to N in forest floor percolates corresponded to the C/N ratio of the solid phase. Concentrations and fluxes were highly dynamic with time and decreased with depth. The largest fluxes in forest floor percolates occurred when the snow melted. The concentrations and fluxes of dissolved organic N were significantly correlated with DOC, but the correlation was weak, indicating different mechanisms of release and consumption. The dynamics of dissolved organic N and DOC in forest floor percolates were not explained by pH and ionic strength of the soil solution nor by the water flux, despite large variations in these. Furthermore, the release of these fractions from the forest floor was not related to the quality and amount of throughfall. Concentrations of dissolved organic N in forest floor percolates increased with soil temperature, while temperature effects on DOC were less pronounced, but their fluxes from the forest floor were not correlated with temperature. In the growing season concentrations of both dissolved organic N and C in forest floor percolates decreased with increasing intensity of throughfall. Thus, the average throughfall intensity was more important than the amount of percolate in regulating their concentrations in forest floor percolates. Our data emphasize the role of dissolved organic N and DOC in the N and C cycle of forest ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 41 (1985), S. 578-584 
    ISSN: 1420-9071
    Keywords: Forest decay ; soil acidification ; predisposing stresses ; incitant stresses ; contributing stresses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 42 (1986), S. 344-350 
    ISSN: 1420-9071
    Keywords: Soil acidification ; acid deposition ; terrestrial ecosystems ; H+ budget ; silicate weathering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Conclusions The total proton load found in these ecosystems exceeds by far the known rates of buffering in soils by silicate weathering and release of basic cations (see above). Under the present proton load most forest soils will therefore acidify and besides losses of nutrients the occurrence of possible toxic ions in the soil unavoidable (Al-buffer range)20, 21. The proportion of the total proton load of the soil that is represented by the internal production emphasizes the importance of acid deposition as main cause of soil acidification and destabilization of forest ecosystems under Central European conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wien : Periodicals Archive Online (PAO)
    Journal of economics/Zeitschrift für Nazionalökonomie. 41 (1981) 400 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...