Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (779)
  • 1935-1939
  • 1890-1899
  • 1997  (779)
  • Life and Medical Sciences  (779)
  • 1
    ISSN: 0730-2312
    Keywords: osteoblasts ; proliferation ; growth control ; differential display ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal rat calvarial-derived osteoblasts in vitro (ROB) reinitiate a developmental program from growth to differentiation concomitant with production of a bone tissue-like organized extracellular matrix. To identify novel genes which may mediate this sequence, we isolated total RNA from three stages of the cellular differentiation process (proliferation, extracellular matrix maturation, and mineralization), for screening gene expression by the differential mRNA display technique. Of 15 differentially displayed bands that were analyzed by Northern blot analysis, one prominent 310 nucleotide band was confirmed to be proliferation-stage specific. Northern blot analysis showed a 600-650 nt transcript which was highly expressed in proliferating cells and decreased to trace levels after confluency and throughout the differentiation process. We have designated this transcript PROM-1 (for proliferating cell marker). A full length PROM-1 cDNA of 607 bp was obtained by 5′ RACE. A short open reading frame encoded a putative 37 amino acid peptide with no significant similarity to known sequences. Expression of PROM-1 in the ROS 17/2.8 osteosarcoma cell line was several fold greater than in normal diploid cells and was not downregulated when ROS 17/2.8 cells reached confluency. The relationship of PROM-1 expression to cell growth was also observed in diploid fetal rat lung fibroblasts. Hydroxyurea treatment of proliferating osteoblasts blocked PROM-1 expression; however, its expression was not cell cycle regulated. Upregulation of PROM-1 in response to TGF-β paralleled the stimulatory effects on growth as quantitated by histone gene expression. In conclusion, PROM-1 represents a small cytoplasmic polyA containing RNA whose expression is restricted to the exponential growth period of normal diploid cells; the gene appears to be deregulated in tumor derived cell lines. J. Cell. Biochem. 64:106-116. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: osteoblasts ; calvaria ; bone formation ; proliferation ; differentiation ; osteogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128-139. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 2-10 
    ISSN: 0730-2312
    Keywords: ICE ; cysteine proteases ; inflammation ; apoptosis ; Ced3 ; secretion ; cell activation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β converting enzyme (ICE) is the first enzyme of a new family of cysteine endoproteinases to be isolated and characterized. An overview of the structure and activity of ICE is outlined together with highlights of salient features common to members of each of the family members. J. Cell. Biochem. 64:2-10. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 27-32 
    ISSN: 0730-2312
    Keywords: interleukin-1β converting enzyme ; gene targeting ; apoptosis ; IL-1β ; IL-1α ; inflammation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β converting enzyme (ICE) processes the inactive proIL-1β to the proinflammatory mature IL-1β. ICE belongs to a family of cysteine proteases that have been implicated in apoptosis. To address the biological functions of ICE, we generated ICE-deficient mice through gene targeting technology. ICE-deficient mice developed normally, appeared healthy, and were fertile. Peritoneal macrophages from ICE-deficient mice underwent apoptosis normally upon ATP treatment. Thymocytes from young ICE-deficient mice also underwent apoptosis when triggered by dexamethasone, gamma irradiation, or aging. ICE-deficient mice had a major defect in the production of mature IL-1β and had impaired IL-1α production on LPS stimulation in vitro and in vivo. ICE-deficient mice were resistant to LPS-induced endotoxic shock. J. Cell. Biochem. 64:27-32. © 1997 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 19-26 
    ISSN: 0730-2312
    Keywords: ICE ; protease ; interleukin-1 ; cytokine ; programmed cell death ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β-converting enzyme (ICE) is a cysteine protease responsible for proteolytic activation of the biologically inactive interleukin-1β precursor to the proinflammatory cytokine. ICE and homologous proteases also appear to mediate intracellular protein degradation during programmed cell death. Inhibition of ICE is a new antiinflammatory strategy being explored by the design of both reversible inhibitors and irreversible inactivators of the enzyme. Such compounds are capable of blocking release of interleukin-1β from human monocytes. ICE inhibitors that cross react against multiple ICE homologs can also block apoptosis in diverse cell types. ICE inhibitors impart protection in vivo from endotoxin-induced sepsis and collagen-induced polyarthritis in rodent models. Further optimization of the current generation of peptidyl ICE inhibitors will be required to produce agents suitable for administration in chronic inflammatory and neurodegenerative diseases. J. Cell. Biochem. 64:19-26. © Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: osteoblast ; differentiation ; replication ; osteoprogenitor ; bone marrow ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent studies have demonstrated the existence of a subset of cells in human bone marrow capable of differentiating along multiple mesenchymal lineages. Not only do these mesenchymal stem cells (MSCs) possess multilineage developmental potential, but they may be cultured ex vivo for many passages without overt expression of a differentiated phenotype. The goals of the current study were to determine the growth kinetics, self-renewing capacity, and the osteogenic potential of purified MSCs during extensive subcultivation and following cryopreservation. Primary cultures of MSCs were established from normal iliac crest bone marrow aspirates, an aliquot was cryopreserved and thawed, and then both frozen and unfrozen populations were subcultivated in parallel for as many as 15 passages. Cells derived from each passage were assayed for their kinetics of growth and their osteogenic potential in response to an osteoinductive medium containing dexamethasone. Spindle-shaped human MSCs in primary culture exhibit a lag phase of growth, followed by a log phase, finally resulting in a growth plateau state. Passaged cultures proceed through the same stages, however, the rate of growth in log phase and the final number of cells after a fixed period in culture diminishes as a function of continued passaging. The average number of population doublings for marrow-derived adult human MSCs was determined to be 38 ± 4, at which time the cells finally became very broad and flattened before degenerating. The osteogenic potential of cells was conserved throughout every passage as evidenced by the significant increase in APase activity and formation of mineralized nodular aggregates. Furthermore, the process of cryopreserving and thawing the cells had no effect on either their growth or osteogenic differentiation. Importantly, these studies demonstrate that replicative senescence of MSCs is not a state of terminal differentiation since these cells remain capable of progressing through the osteogenic lineage. The use of population doubling potential as a measure of biological age suggests that MSCs are intermediately between embryonic and adult tissues, and as such, may provide an in situ source for mesenchymal progenitor cells throughout an adult's lifetime. J. Cell. Biochem. 64:278-294. © 1997 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 328-341 
    ISSN: 0730-2312
    Keywords: Lysyl oxidase ; type I collagen ; myofibroblast ; fibrosis ; mRNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lysyl oxidase (LO), an extracellular enzyme catalysing the first step of collagen and elastin cross-linking, is transiently expressed by myofibroblasts during fibrosis. A cell model with features of myofibroblast was thus established for studying the regulation of LO. Two clones of the 3T6 fibroblast cell line were selected because 1) they produced a relatively high steady-state level of the three lysyl oxidase mRNAs with the same relative ratio similar to fibrotic tissue and 2) they stably displayed certain features of myofibroblast (α-smooth muscle actin cytoskeleton, bundles of cytoskeletal filaments beneath the cytoplasmic membranes). These clones synthesized predominantly type I collagen fibers and a small amount of type III collagen. Neither type IV collagen nor elastin were observed. The cloning and sequencing of 2,073 bp of the mouse Balb/C LO promoter was performed, allowing the identification around the initiation of transcription of consensus sequences which are found on the COL1 promoters. A series of deletion constructs containing the LO 5′-flanking region ligated to the luciferase gene were transiently transfected into 3T6-5 fibroblasts. The region allowing the maximal activity was found between positions -416 to -192, while the more upstream region negatively regulated the promoter. The -898 to -865 sequence (called LOcol1) displayed 79% of homology with a conserved sequence of murine, rat, and human COL1A1 promoters. This sequence participated to the binding of several nuclear factors within a region (-970 to -784) allowing 50% of inhibition of the LO promoter. Therefore, the level of LO transcription is regulated in 3T6-5 fibroblast by positive and negative cis-acting regulatory elements which might have common features with the COL1A1 promoter. J. Cell. Biochem. 64:328-341.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 369-375 
    ISSN: 0730-2312
    Keywords: testis ; phospholipase A2 ; cDNA sequence ; in situ hybridization ; mouse ; pla2g2c ; spermatocytes ; meiosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We use in situ hybridization to demonstrate that the testicular expression of a novel, mouse, low molecular weight phospholipase A2 (PLA2 Group IIc) mRNA is specific to cells undergoing meiosis. A complete cDNA (1421 bp) encoding the mouse Pla2g2c gene was generated with reverse transcription-PCR (RT-PCR) and 5′ and 3′ RACE (rapid amplification of cDNA ends) RT-PCR, and its nucleotide sequence was determined. Northern blots of RNA from different tissues revealed a single 1.6 kb transcript only in testis. In situ hybridization indicated that this mouse gene is transcribed mainly in pachytene spermatocytes, secondary spermatocytes, and round spermatids. Expression of the gene is seen in all stages of the seminiferous epithelium, especially in stages VI-VII. J. Cell. Biochem. 64:369-375. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: endothelin-1 ; phospholipase D ; arachidonic acid ; osteoblasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In a previous study, we have shown that endothelin-1 (ET-1) activates phospholipase D independently from protein kinase C in osteoblast-like MC3T3-E1 cells. It is well recognized that phosphatidylycholine hydrolysis by phospholipase D generates phosphatidic acid, which can be further degraded by phosphatidic acid phosphohydrolase to diacylglycerol. In the present study, we investigated the role of phospholipase D activation in ET-1-induced arachidonic acid release and prostaglandin E2 (PGE2) synthesis in osteoblast-like MC3T3-E1 cells. ET-1 stimulated arachidonic acid release dose-dependently in the range between 0.1 nM and 0.1 μM. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the ET-1-induced arachidonic acid release in a dose-dependent manner as well as the ET-1-induced diacylglycerol formation. 1,6-bis-(cyclohexyloxyminocarbonylamino)-hexane (RHC-80267), an inhibitor of diacylglycerol lipase, significantly suppressed the ET-1-induced arachidonic acid release. The pretreatment with propranolol and RHC-80267 also inhibited the ET-1-induced PGE2 synthesis. These results strongly suggest that phosphatidylcholine hydrolysis by phospholipase D is involved in the arachidonic acid release induced by ET-1 in osteoblast-like cells. J. Cell. Biochem. 64:376-381. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 382-389 
    ISSN: 0730-2312
    Keywords: tissue culture ; vasopressin ; signal transduction ; compartmentation ; internalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have previously reported the existence of separate hormone-responsive and -unresponsive pools of inositol phospholipids in WRK-1 cells. In order to further explore this concept, we have performed experiments to examine the relationship between the plasma membrane receptor and the pool of phosphatidylinositol (Ptdlns) that is metabolized in response to hormonal stimulation. The results support the following conclusions. 1) The amount of Ptdlns metabolized in WRK-1 cells in response to vasopressin is proportional to the number of receptors occupied; neither prolonged activation with nor readdition of a submaximal concentration of vasopressin induced the same degree of Ptdlns metabolism as a maximal concentration of vasopressin. 2) Dissociation of cytoskeletal structures by incubation with cytochalasin D did not alter the amount of Ptdlns accessed during hormonal stimulation. 3) Accession of Ptdlns from internal membranes does not depend on internalization and recycling of the receptor; cells incubated in potassium-free medium failed to internalize receptor-ligand complexes, yet they accessed the same amount of Ptdlns in response to vasopressin as did control cells. 4) Golgi-mediated phosphatidylinositol transport is not involved in hormone-stimulated phosphoinositide turnover, since brefeldin A, which interferes with Golgi-mediated transport processes, had no effect on the amount of Ptdlns accessed during vasopressin stimulation. 5) Phosphoinositide breakdown and compensatory resynthesis is not a closed process; newly synthesized Ptdlns is not preferentially localized to a hormone-responsive pool but is generally redistributed between responsive and unresponsive pools. J. Cell. Biochem. 64:382-389. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 605-617 
    ISSN: 0730-2312
    Keywords: breast cancer ; proteoglycans ; heparan sulfate ; chondroitin sulfate ; sulfation ; fibroblast growth factor-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605-617. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 499-504 
    ISSN: 0730-2312
    Keywords: protein kinase CK2 ; nuclear matrix ; cytoskeleton ; chromatin ; intermediate filaments ; core filaments ; carcinoma ; prostate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix (NM) plays roles of fundamental structural and functional significance as the site of replication, transcription, and RNA processing and transport, acting as an anchor or attachment site for a variety of enzymes and other proteins involved in these activities. We have previously documented that protein kinase CK2 translocates from the cytosol to the nucleus, where it associates preferentially with chromatin and NM, in response to certain growth stimuli. Considering that characteristics of the isolated NM can depend on the procedure employed for its isolation, we compared three standard methods for NM preparation to confirm the association of intrinsic CK2 with this structure. Our data suggest that the method used for isolating the NM can quantitatively influence the measurable NM-associated CK2. However, all three methods employed yielded qualitatively similar results with respect to the stimulus-mediated modulation of NM-associated CK2, thus further supporting the notion that NM is an important site for physiologically relevant functions of CK2. In addition, core filaments and cytoskeleton that were isolated by two of the preparative methods had a small but significant level of associated CK2 activity. J. Cell. Biochem. 64:499-504. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 0730-2312
    Keywords: signal transduction ; stomach ; hormones ; phospholipase C ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In gastric chief cells, agents that activate protein kinase C (PKC) stimulate pepsinogen secretion and phosphorylation of an acidic 72-kDa protein. The isoelectric point and molecular mass of this protein are similar to those for a common PKC substrate; the MARCKS (for Myristoylated Alanine-Rich C Kinase Substrate) protein. We examined expression and phosphorylation of the MARCKS-like protein in a nearly homogeneous suspension of chief cells from guinea pig stomach. Western blotting of fractions from chief cell lysates with a specific MARCKS antibody resulted in staining of a myristoylated 72-kDa protein (pp72), associated predominantly with the membrane fraction. Using permeabilized chief cells. we examined the effect of PKC activation (with the phorbol ester PMA), in the presence of basal (100 nM) or elevated cellular calcium (1 μM), on pepsinogen secretion and phosphorylation of the 72-kDa MARCKS-like protein. Secretion was increased 2.3-, 2.6-, and 4.5-fold by incubation with 100 nM PMA, 1 μM calcium, and PMA plus calcium, respectively. A PKC inhibitor (1 μM CGP 41 251) abolished PMA-induced secretion, but did not alter calcium-induced secretion. This indicates that calcium-induced secretion is independent of PKC activation. Chief cell proteins were labeled with 32P-orthophosphate and phosphorylation of pp72 was detected by autoradiography of 2-dimensional polyacrylamide gels. In the presence of basal calcium PMA (100 nM) caused a 〉 two-fold increase in phosphorylation of pp72. Without PMA, calcium did not alter phosphorylation of pp72. However, 1 μM calcium caused an approx. 50% attenuation of PMA-induced phosphorylation of pp72. Experiments with a MARCKS “phosphorylation/calmodulin binding domain peptide” indicated that calcium/calmodulin inhibits phosphorylation of pp72 by binding to the phosphorylation/calmodulin binding domain and not by inhibiting PKC activity. These observations support the hypothesis that, in gastric chief cells, interplay between calcium/calmodulin binding and phosphorylation of a common domain on the 72-kDa MARCKS-like protein plays a role in modulating pepsinogen secretion. J. Cell. Biochem. 64:514-523. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 565-572 
    ISSN: 0730-2312
    Keywords: transcriptional regulation ; HIV-1 ; replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A cellular transcriptional factor initially identified as the c-myc promoter binding protein (MBP-1) was subsequently characterized as a cell regulatory protein with multifunctional activities. In this study, the role of MBP-1 on human immunodeficiency virus type-1 (HIV-1) transcriptional activity was investigated. MBP-1 showed inhibition of HIV-1 long terminal repeat (LTR)-directed chloramphenicol acetyl transferase (CAT) activity in a transient cotransfection assay. Deletion of upstream elements of the HIV-1 LTR, including the nuclear factor kappa B (NF-kB) and Sp1 binding sites, did not affect the MBP-1 mediated suppression of HIV-1 LTR. The core promoter of the HIV-1 appeared to be the primary sequence involved in MBP-1 mediated inhibition. In the presence of HIV-1 TAR sequence and Tat protein, MBP-1 did not inhibit the viral promoter activity. In addition, cotransfection experiments with HIV-1 LTR and deletion mutants of MBP-1 suggested that the carboxyl terminal half of MBP-1 suppresses the HIV-1 promoter activity. Exogenous expression of MBP-1 showed suppression of HIV-1 replication in acutely infected cells and in cells cotransfected with a molecular clone of HIV-1. These results suggest that exogenous expression of MBP-1 plays an important role in the regulation of HIV-1 replication in infected cells. J. Cell. Biochem. 64:565-572. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 0730-2312
    Keywords: chondrocytes ; calcium ; calmodulin ; binding proteins ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism whose action is mediated by high affinity cell surface receptors and bioactivity and bioavailability regulated, in part, by IGF-1 binding proteins (IGFBPs). Prostaglandin E2 (PGE2) stimulates collagen and proteoglycan synthesis in cartilage via an autocrine feedback loop involving IGF-1. We determined whether the eicosanoid could regulate IGFBP-4, a major form expressed by chondrocytes and, as such, act as a modifier of IGF-1 action at another level. Using human articular chondrocytes in high-density primary culture, Western and Western ligand blotting to measure secreted IGFBP-4 protein, and Northern analysis to monitor IGFBP-4 mRNA levels, we demonstrated that PGE2 provoked a 2.7 ± 0.3- and 3.8 ± 0.5- (n = 3) fold increase in IGFBP-4 mRNA and protein, respectively. This effect was reversed by the Ca++ channel blocker, verapamil, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2. The phorbol ester, PMA, which activated phospholipid-dependent protein kinase C (PKC) in chondrocytes, had no effect on IGFBP-4 production. Cyclic AMP mimetics and PKA activators, IBMX, and Sp-cAMP, inhibited the expression of the binding protein as did the PGE2 secretagogue, interleukin-1β (IL-β). The inhibitory effect of the latter cytokine was mediated by a erbstatin/genistein (tyrosine) sensitive kinase. Dexamethasone, an inhibitor of cyclooxygenase (COX-2) expression and PGE2 synthesis, down-regulated control, constitute levels of IGFBP-4 mRNA and protein, eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2-receptor signalling pathways. The results suggest that extracellular signals control IGFBP-4 production by a number of different transducing networks with changes in Ca++ and calmodulin activity exerting a strong positive influence, possibly maintaining the constitutivity of IGFBP-4 synthesis under basal conditions. PGE2 activation of the IGF-1/IGFBP axis may play a pivotal role in the metabolism of cartilage and possibly connective tissues in general. Eicosanoid biosynthesis may be a rate-limiting step in cartilage repair processes. J. Cell. Biochem. 65:408-419. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 460-468 
    ISSN: 0730-2312
    Keywords: placenta ; planar-polar compounds ; hCG ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Dimethyl sulfoxide (DMSO) exerts a number of biological effects, the most frequently cited being induction of cell differentiation. The compound also increases invasiveness and metastatic potential. In contrast to the many reports of DMSO-induced cell differentiation, we report here that DMSO inhibits the morphological differentiation of human cytotrophoblast cells to syncytiotrophoblast, as revealed by immunofluorescence staining for desmosomal protein and nuclei. Cytotrophoblast cells treated with DMSO under differentiation-inducing conditions remained mononucleated with intense desmosomal staining. The effect was dose dependent, with a maximal effect seen at 1.5% DMSO. Concentrations of ≤0.5% had no effect and concentrations 〉2% were cytotoxic. In addition to these morphological changes, DMSO inhibited secretion of human chorionic gonadotropin in a dose-dependent manner. At a concentration of 1.5%, DMSO inhibited secretion by 70%. If cytotrophoblast cells were cultured in the presence of DMSO and then switched to DMSO-free medium, they proceeded to differentiate normally. While the precise mechanism of action remains unknown, judicious use of DMSO may be a useful tool for studying and manipulating the differentiation of human trophoblast cells in vitro. The findings also indicate that care should be used in interpreting results obtained using DMSO as a carrier in drug and inhibitor studies. J. Cell Biochem. 65:460-468. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 0730-2312
    Keywords: tumor necrosis factor-alpha ; G protein ; phosphatidylinositol-specific phospholipase C ; protein kinases ; osteoblasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role(s) of protein kinases in the regulation of G protein-dependent activation of phosphatidylinositol-specific phospholipase C by tumor necrosis factor-alpha was investigated in the osteoblast cell line MC3T3-E1. We have previously reported the stimulatory effects of tumor necrosis factor-alpha and A1F4-, an activator of G proteins, on this phospholipase pathway documented by a decrease in mass of PI and release of diacylglycerol. In this study, we further explored the mechanism(s) by which the tumor necrosis factor or A1F4- -promoted breakdown of phosphatidylinositol and the polyphosphoinositides by phospholipase C is regulated. Tumor necrosis factor-alpha was found to elicit a 4-5-fold increase in the formation of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate; and a 36% increase in [3H]inositol-1-phosphate within 5 min in prelabeled cells. [3H]inositol-4-phosphate, a metabolite of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate, was found to be the predominant phosphoinositol product of tumor necrosis factor-alpha and A1F4- -activated phospholipase C hydrolysis after 30 min. In addition, the preincubation of cells with pertussis toxin decreased the tumor necrosis factor-induced release of inositol phosphates by 53%. Inhibitors of protein kinase C, including Et-18-OMe and H-7, dramatically decreased the formation of [3H]inositol phosphates stimulated by either tumor necrosis factor-alpha or A1F4- by 90-100% but did not affect basal formation. The activation of cAMP-dependent protein kinase, or protein kinase A, by the treatment of cells with forskolin or 8-BrcAMP augmented basal, tumor necrosis factor-alpha and A1F4--induced [3H]inositol phosphate formation. Therefore, we report that protein kinases can regulate tumor necrosis factor-alpha-initiated signalling at the cell surface in osteoblasts through effects on the coupling between receptor, G-protein and phosphatidylinositol-specific phospholipase C. J. Cell. Biochem. 65:198-208. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 0730-2312
    Keywords: c-jun ; junD ; cardiomyopathy ; myosin ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The proto-oncogenes c-jun and junD are closely related transcriptional factors with opposing actions on cell growth and division. Expression of c-jun rapidly increases as cells enter the cell cycle. Levels of c-jun are also increased in the early stages of experimental cardiac hypertrophy and failure but expression decreases with time. In contrast, junD accumulates in quiescent cells. Expression in end-stage cardiomyopathy has not been studied. Steady-state levels of c-jun and junD mRNA were determined in failing human myocardium (obtained at the time of cardiac transplantation) and in control myocardium from patients who died of noncardiac causes. Relative expression was normalized for glyceraldehyde-3-phosphate dehydrogenase expression. Levels of junD were almost four-fold depressed in myocardium from myopathic hearts (2.1 ± 0.27, × ± SE; n = 20) vs. the controls (7.7 ± 1.1; n = 3). Levels of c-jun were similar in both myopathic and control hearts. Relative expression of beta-myosin heavy chain was the same in both myopathic and control hearts. Levels of junD were still found to be depressed in the myopathic hearts after normalization for myosin heavy chain gene expression. We conclude that c-jun and junD are differentially regulated in end-stage human cardiomyopathy with expression of junD being decreased while relative levels of c-jun mRNA remain unchanged. Further studies are needed to determine the role of junD down-regulation in the development and/or maintenance of the abnormalities present in end-stage heart disease. J. Cell. Biochem. 65:245-253. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 9-15 
    ISSN: 0730-2312
    Keywords: breast cancer ; well/poorly differentiated human breast cancer cells ; estrogen receptor ; nuclear matrix proteins ; diagnostic indicators ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear matrix, besides providing the structural support of the nucleus, is involved in various cellular functions of the nucleus. Nuclear matrix proteins (NMPs), which are both tissue- and cell type-specific, are altered with transformation and state of differentiation. Furthermore, NMPs have been identified as informative markers of disease states. Here, the NMP profiles from human breast cancer cell lines and breast tumours were analyzed using two-dimension gel electrophoresis. We identified NMPs that are associated with well and poorly differentiated human breast cancer cells in vitro and in vivo. Five NMPs (NMBC 1-5) were found to be exclusive for well-differentiated human breast cancer cells, while one NMP (NMBC-6) was found to be present only in poorly differentiated human breast cancer cells. The identification of these proteins suggests the potential use of nuclear matrix proteins as prognostic indicators. J. Cell. Biochem. 66:9-15, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 43-53 
    ISSN: 0730-2312
    Keywords: rho A ; C3 exoenzyme ; focal adhesion ; costamere ; myofibrillogenesis ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of this study was to provide morphological evidence for the presence of rho A protein in developing cardiomyocytes and to investigate its possible role in myofibrillogenesis. Immunostaining with a monoclonal anti-rho antibody gave a diffuse pattern in the cytosol of cultured cardiomyocytes. Introduction of C3 exoenzyme into the cells by electroporation was used to inactivate rho A protein by ADP-ribosylation. An immunostaining with anti-vinculin, anti-talin, and anti-integrin antibodies showed the focal adhesions in electroporation control cardiomyocytes to be evenly distributed in the ventral sarcolemma; the costameric structure was also detected using these antibodies. In contrast, in C3 exoenzyme treated cells, focal adhesions were disassembled and costamere were absent; in addition, β-actin-positive, non-striated fibrils were lost and assembly of M-protein, titin, and α-actinin into myofibrils was poor, as shown by diffuse and filamentous staining pattern. C3 exoenzyme treatment had a less marked effect on mature cardiomyocytes than on immature cells; in this case, cells became distorted and few myofibrils were seen. The intensity of anti-phosphotyrosine antibody staining of the focal adhesion was also decreased or diffuse in C3 exoenzyme-treated cardiomyocytes, suggesting dephosphorylation of focal adhesion components. We therefore conclude that small G protein rho A plays an important role in myofibril assembly in cardiomyocytes. J. Cell. Biochem. 66:43-53, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 153-164 
    ISSN: 0730-2312
    Keywords: thermotolerance ; molecular chaperone ; breast cancer and CHO cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Constitutive expression of human hsp27 resulted in a 100-fold increase in survival to a single lethal heat shock in CHO cells without effecting the development of thermotolerance. A possible mechanism for the thermoprotective function of hsp27 may be increased recovery of protein synthesis and RNA synthesis following a heat shock. A lethal heat shock (44°C, 30 min) results in a 90% reduction in the rate of protein synthesis in non-tolerant cells. Control transfected cells recovered protein synthesis to a pre-heat shock rate 10 h after the heat shock; while cell lines that constitutively express human hsp27 recovered 6 h after the heat shock. Thermotolerant cells had a 50% reduction in protein synthesis, which recovered within 7 h following the heat shock. The same lethal heat shock (44°C, 30 min) reduced RNA synthesis by 60% in the transfected cell lines, with the controls recovering in 7 h; while the hsp27 expressing cell lines recovered within 5 h. Thermotolerant cells had a 40% reduction in RNA synthesis and were able to recover within 4 h. The enhanced ability of hsp27 to facilitate recovery of protein synthesis and RNA synthesis following a heat shock may provide the cell with a survival advantage. J. Cell. Biochem. 66:153-164, 1997. © 1997 Wiley-Liss Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 0730-2312
    Keywords: vitamin D receptor ; retinoid X receptor ; transactivation systems ; vitamin D regulation ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factors of the nuclear hormone receptor familiy regulate gene expression via a complex network of macromolecular interactions. The ligand dependent activity of the vitamin D receptor is of particular interest because it modulates gene expression by the heterodimeric interaction with retinoid X receptors. We report here that individual functions of the vitamin D receptor including DNA-binding, homo- and heterodimerization and transactivation can be reconstituted in the yeast Saccharomyces cerevisiae. Interestingly, the simultaneous expression of the native vitamin D receptor and the retinoid X receptor β resulted in a ligand independent transactivation of the lacZ reporter gene coupled to a mouse osteopontin vitamin D response element. However, homodimerization of the vitamin D receptor and heterodimerization were strongly enhanced upon ligand binding, when the receptors were expressed as fusion proteins with the Gal4 transcription factor in a yeast two-hybrid system. Furthermore, transactivating activity of a Gal4-fused vitamin D receptor was induced by vitamin D in a one-hybrid system devoid of retinoid X receptors. In addition, both Gal4-based systems behaved similar with regard to their dose-dependent response to vitamin D and related compounds when compared to the transcriptional activity of the vitamin D receptor in transiently transfected MCF-7 cells. Our results point out that specific ligands strongly enhanced receptor dimerization and induced transactivation in yeast and in MCF-7 cells. The constitutive transactivation by vitamin D receptor-retinoid X receptor heterodimers in yeast, depending on DNA binding of the receptors, strongly argues for the existence of cofactors, which are absent in yeast, but play a fundamental role in gene regulation in higher eukaryotic organisms. J. Cell. Biochem. 66:184-196, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 0730-2312
    Keywords: nerve growth factor ; fibroblast growth factor ; K-252a ; staurosporine ; p140trk ; receptor ; signal transduction ; tyrosine kinase ; transfection ; overexpression ; PC12/endothelial hybrid cells ; DNA synthesis ; proliferation ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nerve growth factor (NGF) regulates proliferation, differentiation, and survival of sympathetic and sensory neurons through the tyrosine kinase activity of its receptor, p140trk. These biological effects of NGF depend upon the signal-mediating function of p140trk substrates which are likely to differ from cell to cell. To define p140trk receptor substrates and the details of signalling by NGF in the hybrid cell PC12EN, we stably transfected cultures with a vector encoding a full-length human p140trk cDNA sequence. Two stably transfected clones, one expressing p140trk with higher affinity (PC12EN-trk3; Kd 57.4 pM, Bmax 9.7 pmole/mg) and one expressing p140trk with a lower affinity (PC12EN-trk1; Kd 392.4 pM, Bmax 5.7 pmole/mg) were generated. Radioreceptor assays indicate that transfected p140trk receptors show slow NGF-dissociation kinetics, are resistant to trypsin or Triton X-100 treatment, are specific for NGF compared to other neurotrophins, and are internalized or downregulated as are native PC12 p140trk receptors. NGF stimulates p140trk tyrosine phosphorylation in a dose- (0.01-10 ng/ml) and time- (5-120 min) dependent manner, and tyrosine phosphorylation was inhibited by 200-1,000 nM K-252a. NGF-induced Erk stimulation for 60 min was assessed using myelin basic protein as a substrate. NGF treatment also led to an increased phosphorylation of p70S6k, SNT, and phospholipase Cγ, demonstrating that the major NGF-stimulated signalling pathways found in other cells are activated in PC12EN-trk cells. Staurosporine (5-50 nM) rapidly and dBcAMP (1 mM) more slowly, but not NGF induced morphological differentiation in PC12EN-trk cells. Rather, NGF treatment in low-serum medium stimulated a 1.3- and 2.3-fold increase in DNA synthesis measured by [3H]thymidine incorporation in PC12EN-trk1 and PC12EN-trk3, respectively. These data highlight the functionality of the transfected p140trk receptors and indicate that these transfected cells may serve as a novel cellular model facilitating the study of the mitogenic properties of NGF signalling and the transducing role of the p140trk receptor substrates. J. Cell. Biochem. 66:229-244. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 574-590 
    ISSN: 0730-2312
    Keywords: endothelial cells ; tissue factor pathway inhibitor (TFPI) ; heparan sulfate proteoglycans ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A synthetic peptide, which was shown to bind extracellular matrix heparan sulfate chains with a high degree of affinity and specificity [Colburn et al. (1996): Arch Biochem Biophys 325:129-138], has now been found to promote the transfer and the deposition of endothelial cell surface proteoglycans in the extracellular matrix. The peptide also induces preferential binding of extracellular matrix heparan sulfate proteoglycans, which have been added to the supernatant growth medium, and the requirement for its presence is stringent in that only a negligible amount of proteoglycans are bound to the cell layer in the absence of the peptide. In addition, antibodies directed against the peptide detect the accumulation of the peptide in the matrix compartment where the peptide is found associated with the proteoglycans transferred from the cell surface.The sequence of events induced by the peptide appears to be an extension of a naturally occurring process since proteoglycans with properties similar to those of the species ordinarily present in the extracellular matrix have been observed to transfer from the cell surface to the matrix during a pulse-chase experiment. We suggest that formation of the complex peptide-proteoglycan with consequent displacement of the proteoglycan from its anchorage on the cell, initiates the process of transfer of the heparan sulfate-bound peptide from the cell surface to the extracellular matrix. J. Cell. Biochem. 65:574-590. © 1997 Wiley-Liss Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 37-42 
    ISSN: 0730-2312
    Keywords: archaeon ; ADPribose ; glycation ; ADPribose transferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In the archaeon Sulfolobus solfataricus, protein ADPribosylation by free ADPribose was demonstrated by testing both [adenine-14C(U)]ADPR and [adenine- 14C(U)]NAD as substrates. The occurrence of this process was shown by using specific experimental conditions. Increasing the incubation time and lowering the pH of the reaction mixture enhanced the protein glycation by free ADPribose. At pH 7.5 and 10 min incubation, the incorporation of free ADPribose into proteins was highly reduced. Under these conditions, the autoradiographic pattern showed that, among the targets of ADPribose electrophoresed after incubation with 32P-NAD, the proteins modified by free 32P-ADPribose mostly corresponded to high molecular mass components. Among the compounds known to inhibit the eukaryotic poly-ADPribose polymerase, only ZnCl2 highly reduced the ADPribose incorporation from NAD into the ammonium sulphate precipitate. A 20% inhibition was measured in the presence of nicotinamide or 3-aminobenzamide. No inhibition was observed replacing NAD with ADPR as substrate. J. Cell. Biochem. 66: 37-42, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 65-76 
    ISSN: 0730-2312
    Keywords: chylomicron ; very low density lipoprotein ; high density lipoprotein ; apoprotein B-100 ; apoprotein B-48 ; apoprotein A-I ; fat transport ; ontogeny ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Studies employing human fetal intestine have yielded much interesting information on the role of polarized enterocytes in fat absorption and transport. Using the organ culture model, we examined the influence of hydrocortisone on the synthesis and secretion of lipids and lipoproteins. Human jejunal explants were cultured for 5 days at 37°C in serum-free medium containing either [14C]-oleic acid or [14C]-acetate, alone or supplemented with hydrocortisone (25 or 50 ng/ml). The uptake of [14C]-oleic acid was associated with the production of triglycerides, phospholipids, and cholesteryl esters, which were all affected by hydrocortisone. This hormonal agent (50 μg) led to the marked reduction of secreted triglycerides (43%, P 〈 0.01), phospholipids (39%, P 〈 0.01), and cholesteryl esters (36%, P 〈 0.05) without altering the characteristic distribution of tissue and medium lipid classes. Similarly, hydrocortisone significantly (P 〈 0.01) decreased (∼60%) the incorporation of [14C]-acetate into secreted free and esterified cholesterol in the medium. With [14C]-oleic acid as a precursor, hydrocortisone significantly diminished the delivery of chylomicrons and very low density lipoproteins to the medium while consistently enhancing the secretion of high density lipoproteins. In parallel, [35S]-methionine pulse-labeling of jejunal explants revealed the concomitant inhibitory effect of hydrocortisone on apo B-100 synthesis and hydrocortisone's stimulatory effect on apo B-48 and apo A-I. These studies suggest that glucocorticoids play a critical role in lipoprotein processing during intestinal development. J. Cell. Biochem. 66:65-76 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 0730-2312
    Keywords: deletion mutants ; ors12 ; replication activity ; mammalian origin ; autonomous replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have generated a panel of deletion mutants of ors12 (812-bp), a mammalian origin of DNA replication previously isolated by nascent strand extrusion from early replicating African Green monkey (CV-1) DNA. The deletion mutants were tested for their replication activity in vivo by the bromodeoxyuridine substitution assay, after transfection into HeLa cells, and in vitro by the DpnI resistance assay, using extracts from HeLa cells. We identified a 215-bp internal fragment as essential for the autonomous replication activity of ors12. When subcloned into the vector pML2 and similarly tested, this subfragment was capable of autonomous replication in vivo and in vitro. Several repeated sequence motifs are present in this 215-bp fragment, such as TGGG(A) and G(A)AG (repeated four times each); TTTC, AGG, and CTTA (repeated 3 times each); the motifs CACACA and CTCTCT, and two imperfect inverted repeats, 22 and 16 bp long, respectively. The overall sequence of the 215-bp fragment is G/C-rich (50.2%), by comparison to the 186-bp (33.5% G/C-rich) minimal sequence required for the autonomous replication activity of ors8, another functional ors that was similarly isolated and characterized. J. Cell. Biochem. 66:87-97, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 0730-2312
    Keywords: AML-3 ; transcription factors ; partitioning ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype. J. Cell. Biochem. 66:123-132, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 0730-2312
    Keywords: cell shape ; cytoskeleton ; stress fibers ; autophagy ; vacuolar degradation ; hyaluronan ; chondroitin sulfate ; keratan sulfate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The activity of ornithine decarboxylase, the key enzyme in the synthesis of polyamines, is essential for proliferation and differentiation of all living cells. Two inhibitors of ornithine decarboxylase, α-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA), caused swelling of endoplasmic reticulum (ER) and medial and trans Golgi cisternae, and the disappearance of stress fibers, as visualized by staining with fluorescent concanavalin A (ConA), C6-NBD-ceramide or wheat germ agglutinin (WGA), and phalloidin, respectively. In contrast, the pattern of microtubules, stained with a β-tubulin antibody, was not affected. Rough ER seemed to be especially affected in polyamine deprivation forming whorls and involutions, which were observed by transmission electron microscopy. Since ER and Golgi apparatus are vital parts of the glycosylation and secretory machinery of the cell, we tested the ability of these structurally altered cell organelles to synthesize proteoglycans using [3H]glucosamine and [35S]sulfate as precursors. The total incorporation rate into proteoglycans and hyaluronan was not reduced in polyamine-deprived cells, suggesting that the total glycosylation capacity of cells was not affected. However, the synthesis of a high molecular weight proteoglycan containing chondroitin and keratan sulfate was completely inhibited. The remodeling of cytoskeleton and rough endoplasmic reticulum in polyamine deprivation may perturb the synthesis and secretion of the components of membrane skeleton and of the extracellular matrix, e.g., proteoglycans. Rough ER and cytoskeleton may be the targets where polyamines affect cell proliferation and differentiation. J. Cell Biochem. 66:165-174, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 219-228 
    ISSN: 0730-2312
    Keywords: DNA strand breaks ; superoxide ; granulocytes ; human ; okadaic acid ; fluoride ; staurosporine ; phorbol myristate acetate ; hydrogen peroxide ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phorbol ester treatment of granulocytes triggers release of superoxide (O2-) and a concomitant burst of DNA strand breaks. The relationship between the amount of O2- and the number of DNA breaks has not previously been explored. To quantify the relatively large amount of O2- generated over a 40-min period by 1 × 106 granulocytes/mL, a discontinuous “10-min pulse” method employing cytochrome c was used; 140 nmol O2- per 1 × 106 cells was detected. DNA strand breaks were quantified by fluorimetric analysis of DNA unwinding (FADU). To vary the level of O2- released by cells, inhibitors of the respiratory burst were used. Sodium fluoride (1-10 mM) and staurosporine (2-10 nM) both inhibited O2- production. In both cases, however, inhibition of strand breakage was considerably more pronounced than inhibition of O2-. Zinc chloride (50-200 μM) inhibited both O2- and DNA breaks, approximately equally. Dinophysistoxin-1 (okadaic acid) inhibited O2- production more effectively than it inhibited DNA breaks. O2- dismutes to H2O2, a reactive oxygen species known to cause DNA breaks. The addition of catalase to remove extracellular H2O2 had no effect on DNA breakage. Using pulse field gel electrophoresis, few double-stranded breaks were detected compared to the number detected by FADU, indicating that about 95% of breaks were single-stranded. The level of DNA breaks is not directly related to the amount of extracellular O2- or H2O2 in PMA-stimulated granulocytes. We conclude that either an intracellular pool of these reactive oxygen species is involved in breakage or that the metabolic inhibitors are affecting a novel strand break pathway. J. Cell. Biochem. 66:219-228, 1997. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0730-2312
    Keywords: p53 ; HPV ; apoptosis ; mitochondrial permeability transition ; ICE-like proteases ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Infection of cervical epithelial cells with certain high risk HPV genotypes is thought to play an etiologic role in the development of cervical cancer. In particular, HPV type 16 and 18 early protein 6 (E6) is thought to contribute to epithelial transformation by binding to the tumor suppressor protein p53, targeting it for rapid proteolysis, resulting in loss of its cell cycle arrest and apoptosis-inducing activities. Recent data indicate that factors responsible for triggering apoptosis reside in the cytoplasm of cells, and not in the nucleus. In particular, the findings that mitochondria are required in certain cell-free models for induction of apoptosis and that bcl-2 is localized to mitochondria have focused attention on the role of the mitochondrial membrane permeability transition (MPT) in apoptosis. Here we present data to indicate that HPV 16 E6 expression sensitizes cells to MPT-induced apoptosis. We also report that HPV 16 E6 sensitization of cells to MPT-induced apoptosis occurs only in the presence of wildtype (wt) p53 expression. The extent of apoptosis induced by atractyloside (an inducer of the MPT) in normal, temperature-sensitive (ts) p53, and HPV-16 E6 transfected J2-3T3 cells, and the HPV expressing cervical carcinoma cell lines SiHa, Hela and CaSki was determined. C33A cells, which express mutant p53 but not HPV, were also exposed to atractyloside in the presence or absence of HPV 16 E6 expression. Dose-dependent apoptosis induced by atractyloside in normal J2-3T3 cells and cervical carcinoma cells was measured by loss of cell viability, nuclear fragmentation and DNA laddering. The sensitivity of cells to atractyloside-induced apoptosis was found to be: HPV 16 E6-J2-3T3 〉 CaSki 〉 normal-J2-3T3 cells ≈ ts p53-J2-3T3 ≈ vector-J2-3T3 cells 〉 Hela 〉 SiHa 〉 C33A ≈ C33A 16 E6. Cyclosporin A (CsA), an inhibitor of the MPT, and ICE-I, a protease inhibitor, provided protection against atractyloside-induced apoptosis. These findings indicate that: 1) high risk HPV 16 E6 protein is capable of sensitizing cells to apoptosis; 2) HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis occurs in a p53-dependent fashion; 3) the target of HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis is the mitochondria; and 4) HPV 16 E6 sensitization of cells to atroctycoside-induced apoptosis involves an ICE-like protease-sensitive mechanism, regulating the onset of the MPT. These findings constitute the first evidence that mitochondria play a role in HPV 16 E6 modulation of apoptosis. J. Cell. Biochem. 66:245-255. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 309-321 
    ISSN: 0730-2312
    Keywords: oncogenes ; tumor suppressors ; human papillomavirus type 16 ; smoking cofactor ; immortalization ; tumorigenesis ; mRNA ; proteins ; oncogenesis ; senescence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We studied the molecular mechanism of successive multistep cervical carcinogenic progression with our previously established in vitro model system. This system was composed of primary human endocervical cells (HEN), two lines of HEN immortalized by HPV16 and their counterparts subsequently malignantly transformed by cigarette smoke condensate (CSC). The expression was examined of diverse cellular genes associated with oncogenesis and senescence, especially for cervical cancer. Consistent results were seen for the pairs of immortalized and malignantly transformed lines. Immortalization of HEN by HPV16 resulted in enhanced expression of H-ras, c-myc, B-myb, p53, p16INK4 and PCNA mRNA; enhanced expression of p16 and PCNA proteins; decreased expression of WAF1/p21/Cip1/Sid1 and fibronectin mRNA; and decreased p53 protein. On the other hand, the CSC-transformed counterparts of HPV16-immortalized cells had up-regulated levels of B-myb, p53 and WAF1 mRNA and p53 protein. Our results indicate that the differential activation or inactivation of multiple cellular genes is important for the immortalization, as well as the transformation, of human cervical cells. Further, we suggest that our in vitro model system is useful for investigating the molecular mechanism of multistep cervical carcinogenesis. J. Cell. Biochem. 66: 309-321, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 337-345 
    ISSN: 0730-2312
    Keywords: sea urchin ; embryo ; gelatinase ; metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have partially purified and characterized an 87 kDa gelatinase activity expressed in later stage sea urchin embryos. Cleavage activity was specific for gelatin and no cleavage of sea urchin peristome type I collagen, bovine serum albumin or casein was detected. Magnesium and Zn2+ inhibited the gelatinase and Ca2+ protected against inhibition. Ethylenediamine tetracetic acid, ethylenebisoxyethylenenitriol tetraacetic acid and 1,10-phenanthroline were inhibitory, suggesting that the gelatinase is a Ca2+- and Zn2+-dependent metalloproteinase. No inhibition was detected with serine or cysteine protease inhibitors and the vertebrate matrix metalloproteinase (MMP) inhibitor, Batimastat, was also ineffective. The vertebrate MMP activator p-aminophenylmercuric acetate was without effect. These results allow us to identify both similarities and differences between echinoderm and vertebrate gelatinases. J. Cell. Biochem. 66: 337-345, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 427-432 
    ISSN: 0730-2312
    Keywords: TGFβ ; transforming growth factor β ; Cdk ; cyclin-dependent kinase ; Kip ; cdk-inhibitor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Loss of sensitivity to the negative growth regulator transforming growth factor β (TGFβ) is a feature of many different tumor types and is likely involved in tumor progression. In some cases this loss of sensitivity to TGFβ has been shown to be manifest in the absence of membrane-associated TGFβ receptor complexes, thus preventing initiation of antiproliferative signals from the cell surface. In others, loss of sensitivity to TGFβ-induced inhibitory signals has been attributed to loss of function of intracellular effectors of TGFβ-induced inhibitory signals due to mutation or allelic loss of effector genes and their products. The intracellular effectors of TGFβ inhibitory signals have been shown to be involved in the normal regulation of progression through the cell cycle, specifically during G1 phase. In this manner, elucidation of the mechanisms by which TGFβ inhibits cell growth not only helps us identify steps involved in tumor progression, but also allows us to better understand how cells regulate progression through the cell cycle. J. Cell. Biochem. 66:427-432, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 16-26 
    ISSN: 0730-2312
    Keywords: heat stress ; kinase FA/GSK-3&agr ; tyrosine phosphorylation/activation ; cascade activation ; protein expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Exposure of A431 cells to a rapid temperature increase from 37° to 46°C could induce an increased expression (∼200% of control) and tyrosine phosphorylation/activation (∼300% of control) of protein kinase FA/glycogen synthase kinase-3α (kinase FA/GSK-3α) in a time-dependent manner, as demonstrated by an anti-kinase FA/GSK-3α immunoprecipitate kinase assay and by immunoblotting analysis with anti-kinase FA/GSK-3α and anti-phosphotyrosine antibodies. The heat induction on the increased expression of kinase FA/GSK-3α could be blocked by actinomycin D but not by genistein. In contrast, the heat induction on tyrosine phosphorylation/activation of kinase FA/GSK-3α could be blocked by genistein or protein tyrosine phosphatase, indicating that heat stress induces a dual control mechanism, namely, protein expression and subsequent tyrosine phosphorylation to cause cellular activation of kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α represents a newly described heat stress-inducible protein subjected to tyrosine phosphorylation/activation, representing a new mode of signal transduction for the regulation of this human carcinoma dedifferentiation modulator and a new mode of heat induction on cascade activation of a protein kinase. J. Cell. Biochem. 66:16-26, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 54-64 
    ISSN: 0730-2312
    Keywords: calpain activation ; platelet ; proteolysis of talin ; shear stress ; shear-induced platelet aggregation (SIPA) ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fluid shear stress has been known to activate platelet reaction such as aggregation, but the exact mechanism of shear-induced platelet aggregation (SIPA) has not been fully understood. Calpain, an intracellular calcium-activated cysteine protease, is abundant in platelets and is considered to be activated and involved in the proteolytic processes during platelet activation. A possible activation of calpain in SIPA was investigated, employing a newly developed aggregometer and specific monoclonal antibodies to detect activation of calpain. When a shear stress gradient varying between 6 and 108 dyn/cm2 was applied to platelets, activation of μ-calpain was observed only in high-shear-stressed platelets, resulting in the proteolysis of talin. At 1 min after the onset of constant high shear stress of 108 dyn/cm2, μ-calpain activation and proteolysis of talin were detected and increased in a time-dependent manner. Constant shear stress more than 50 dyn/cm2, applied for 5 min, caused μ-calpain activation and proteolysis of talin, which were increased in a shear-force-dependent manner. Calpeptin, a calpain-specific peptide antagonist, caused the complete inhibition of both μ-calpain activation and proteolysis of talin, while SIPA profiles with calpeptin showed almost no change compared to those without calpeptin. These results suggest the possibility of calpain involvement in late phases of shear-induced platelet activation such as cytoskeletal reorganization. J. Cell. Biochem. 66:54-64, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 0730-2312
    Keywords: cell cycle control ; H4 gene promoter ; G1/S phase transition point ; CDP/cut ; interferon regulatory factor 2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The histone H4 gene promoter provides a paradigm for defining transcriptional control operative at the G1/S phase transition point in the cell cycle. Transcription of the cell cycle-dependent histone H4 gene is upregulated at the onset of S phase, and the cell cycle control element that mediates this activation has been functionally mapped to a proximal promoter domain designated Site II. Activity of Site II is regulated by an E2F-independent mechanism involving binding of the oncoprotein IRF2 and the multisubunit protein HiNF-D, which contains the homeodomain CDP/cut, CDC2, cyclin A, and the tumor suppressor pRb. To address mechanisms that define interactions of Site II regulatory factors with this cell cycle control element, we have investigated these determinants of transcriptional regulation at the G1/S phase transition in FDC-P1 hematopoietic progenitor cells. The representation and activities of histone gene regulatory factors were examined as a function of FDC-P1 growth stimulation. We find striking differences in expression of the pRb-related growth regulatory proteins (pRb/p105, pRb2/p130, and p107) following the onset of proliferation. pRb2/p130 is present at elevated levels in quiescent cells and declines following growth stimulation. By contrast, pRb and p107 are minimally represented in quiescent FDC-P1 cells but are upregulated at the G1/S phase transition point. We also observe a dramatic upregulation of the cellular levels of pRb2/p130-associated protein kinase activity when S phase is initiated. Selective interactions of pRb and p107 with CDP/cut are observed during the FDC-P1 cell cycle and suggest functional linkage to competency for DNA binding and/or transcriptional activity. These results are particularly significant in the context of hematopoietic differentiation where stringent control of the cell cycle program is requisite for expanding the stem cell population during development and tissue renewal. J. Cell. Biochem. 66:512-523, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 0730-2312
    Keywords: human prostatic cancer cell (PC-3) ; osteoblastic cell differentiation ; bone nodule formation ; alkaline phosphatase activity ; osteocalcin ; osteopontin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5-30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248-256, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 0730-2312
    Keywords: retinoblastoma family ; pRb ; p107 ; pRb2/p130 ; neuroblastoma ; differentiation ; B-myb ; c-myb ; E2F ; promoter ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Neuroblastoma cells can undergo neural differentiation upon treatment with a variety of chemical inducers and growth factors. During this process, many cell cycle-related genes are downregulated while differentiation-specific genes are triggered. The retinoblastoma family proteins, pRb, p107, and pRb2/p130, are involved in transcriptional repression of proliferation genes, mainly through their interaction with the E2F transcription factors. We report that pRb2/p130 expression levels increased during differentiation of neuroblastoma cell line LAN-5. On the other hand, both pRb and p107 decreased and underwent progressive dephosphorylation at late differentiation times. The expression of B-myb and c-myb, two targets of the retinoblastoma family proteins, were downregulated in association with the increase of pRb2/p130, which was detected as the major component of the complex with E2F on the E2F site of the B-myb promoter in differentiated cells. Interestingly, E2F4, a preferential partner of p107 and pRb2/p130, was upregulated and underwent changes in cellular localization during differentiation. In conclusion, our data suggest a major role of pRb2/p130 in the regulation of B-myb promoter during neural differentiation despite the importance of cofactors in modulating the function of the retinoblastoma family proteins. J. Cell. Biochem. 67:297-303, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 338-352 
    ISSN: 0730-2312
    Keywords: basement membrane ; vitamin C ; degradation ; proline hydroxylation ; teratocarcinoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2-4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (- ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338-352, 1997. Published 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 0730-2312
    Keywords: human osteoblasts ; human bone marrow stromal cells ; alkaline phosphatase ; osteopontin ; bone sialoprotein ; osteonectin ; decorin ; biglycan ; type I collagen ; osteocalcin ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the effects of BMP-2 on the expression of bone matrix proteins in both human bone marrow stromal cells (HBMSC) and human osteoblasts (HOB) and their proliferation and mineralization. Both HBMSC and HOB express BMP-2/-4 type I and type II receptors. Treatment of these two cell types with BMP-2 for 4 weeks in the presence of β-glycerophosphate and ascorbic acid results in mineralization of their matrix. BMP-2 increases the mRNA level and activities of alkaline phosphatase and elevates the mRNA levels and protein synthesis of osteopontin, bone sialoprotein, osteocalcin, and α1(I) collagen in both cell types. Whereas the mRNA level of decorin is increased, the mRNA concentration of biglycan is not altered by BMP-2. No effect on osteonectin is observed. The effect of BMP-2 on bone matrix protein expression is dose dependent from 25 to 100 ng/ml and is evident after 1-7 days treatment. In the presence of BMP-2, proliferation of HBMSC and HOB is decreased under either serum-free condition or in the presence of serum. Thus, BMP-2 has profound effects on the proliferation, expression of most of the bone matrix proteins and the mineralization of both relatively immature human bone marrow stromal preosteoblasts and mature human osteoblasts. J. Cell. Biochem. 67:386-398, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 0730-2312
    Keywords: artificial chromosome ; episome ; YAC ; nuclear matrix attachment region ; MAR ; replication origin ; DNA replication ; fluorescent in situ hybridization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Three different mammalian origins of DNA replication, 343, S3, and X24, have been cloned into a 15.8 kb circular yeast vector pYACneo. Subsequent transfection into HeLa cells resulted in the isolation of several stably maintained clones. Two cell lines, C343e2 and CS3e1, were found to have sequences maintained as episomes in long-term culture with a stability per generation of approximately 80%. Both episomes also contain matrix attachment region (MAR) sequences which mediate the binding of DNA to the nuclear skeleton and are thought to play a role in DNA replication. Using high salt extraction of the nucleus and fluorescent in situ hybridization, we were able to demonstrate an association of the 343 episome with the nuclear matrix, most probably through functional MAR sequences that allow an association with the nuclear matrix and associated regions containing essential replication proteins. The presence of functional MARs in small episomal sequences may facilitate the replication and maintenance of transfected DNA as an episome and improve their utility as small episomal constructs, potential microchromosomes. J. Cell. Biochem. 67:439-450, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 492-497 
    ISSN: 0730-2312
    Keywords: interferon-γ ; PMA ; proteinase inhibitor ; cytokine ; low density lipoprotein receptor-related protein ; receptor-associated protein ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human α2-macroglobulin (α2M) is a broad spectrum proteinase inhibitor and cytokine carrier synthesized by a number of cell types including monocytes and macrophages. In this study, we report on the expression of α2M by THP-1 cells. This monocytic cell line can be differentiated into a macrophage-like phenotype by treatment with interferon-γ (IFN-γ) or phorbol 12-myristate 13-acetate (PMA). α2M was synthesized by THP-1 cells at a rate of 75 ng/106 cells/24 h, as determined by Western blot analysis. After treating the cells with 500 U/ml of IFN-γ or with 100 ng/ml PMA, the synthesis rate increased to 219 ng/106 cells/24 h and to 179 ng/106 cells/24 h, respectively. The same agents also increased α2M expression, as determined by Northern blot analysis. When the α2M receptor antagonist, receptor associated protein (RAP), was included in the THP-1 medium, the amount of α2M recovered in the conditioned medium increased. This result suggests that THP-1-secreted proteinases react with secreted α2M and that the resulting complexes are catabolized by the α2M receptor, which is also called low density lipoprotein receptor-related protein (LRP). We conclude that α2M synthesis by THP-1 cells depends on the state of cellular differentiation. Reaction of α2M with secreted proteinases may have minimized previous estimates of the rate of synthesis of α2M by certain cells in culture. J. Cell. Biochem. 67:492-497, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 514-527 
    ISSN: 0730-2312
    Keywords: smooth muscle ; actin ; myogenesis ; cytoskeleton ; microfilaments ; protein crosslinking ; muscle cells ; cell fractionation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mouse BC3H1 myogenic cells and a bi-functional chemical cross linking reagent were utilized to investigate the polymerization of newly-synthesized vascular smooth muscle (α-actin) and non-muscle (β- and γ-actin) actin monomers into native F-actin filament structures during myogenesis. Two actin dimer species were identified by SDS-PAGE analysis of phenylenebismaleimide-cross linked fractions of BC3H1 myoblasts and myocytes. P-dimer was derived from the F-actin-enriched, detergent-insoluble cytoskeleton. Pulse-chase analysis revealed that D-dimer initially was associated with the cytoskeleton but then accumulated in the soluble fraction of lysed muscle cells that contained a non-filamentous or aggregated actin pool. Immunoblot analysis indicated that non-muscle and smooth muscle actins were capable of forming both types of dimer. However, induction of smooth muscle α-actin in developing myoblasts coincided with an increase in D-dimer level which may facilitate actin stress fiber assembly. Smooth muscle α-actin was rapidly utilized in differentiating myoblasts to assemble extraction-resistant F-actin filaments in the cytoskeleton whereas non-muscle β- and γ-actin filaments were more readily dissociated from the cytoskeleton by an extraction buffer containing ATP and EGTA. The data indicate that cytoarchitectural remodeling in developing BC3H1 myogenic cells is accompanied by selective actin isoform utilization that effectively segregates multiple isoactins into different sub-cellular domains and/or supramolecular entities. J. Cell. Biochem. 67:514-527, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. v 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 0730-2312
    Keywords: chromatin loops ; chromosome organization ; compositional mapping ; gene cluster ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Eukaryotic chromosomes are ponctuated by specialized DNA sequences (MARs) characterized by their ability to bind the network of nonhistone proteins that form the nuclear matrix or scaffold. We previously described an amplifiable cluster of genes with different tissue-specific expression patterns, located on Chinese hamster chromosome 1q. This model is especially appropriate to study the relationships between MARs and transcription units. We show here that four attachment regions, with sequences exhibiting motifs specific to MARs, are present within the 100 kb of screened DNA. Three of them are relatively short sequences localized in intergenic regions. The last one extends over one of the transcription units and contains a region previously identified as a recombination hot spot. Moreover, the analysis of a DNA sequence extending over some 50 Kb of this region and spanning at least four genes, disclosed a strikingly sharp change in G + C content. This strongly suggests that the studied region contains the boundary of two isochores. We propose that the frequency and the size of MARs are correlated to their localization in G + C rich or poor domains. J. Cell. Biochem. 67:541-551, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 0730-2312
    Keywords: CAAX motif ; farnesyltransferase inhibitor ; K-ras ; lung cancer ; monoterpene ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study was designed to test the chemopreventive potential of perillyl alcohol, an inhibitor of farnesyltransferase, in a mouse lung tumor bioassay. Perillyl alcohol is a naturally occurring monoterpene found in lavender, cherries, and mint. We have shown previously that the majority of lung tumors in this bioassay have an activating mutation in the K-ras gene, which occurs early in the development of mouse lung carcinogenesis. The Ras protein undergoes a series of post-translational modifications, the first of which is farnesylation at the cysteine of the C-terminal CAAX motif. These modifications lead to the anchoring of Ras p21 to the plasma membrane in its biologically active state. Activated Ras p21 couples growth regulatory signals from receptor tyrosine kinases to cytoplasmic second messengers. In a preliminary study, we determined the maximum tolerated dose of perillyl alcohol to be 75 mg/kg body weight. For the bioassay, 5-week-old male (C3H/HeJ X A/J) F1 hybrid mice were randomized into trial groups, and treated with perillyl alcohol three times per week i.p., starting 1 week prior to initiation with the carcinogen NNK, and continuing for 22 weeks after initiation. Our results show a 22% reduction in tumor incidence, and a 58% reduction in tumor multiplicity. Our study demonstrates that perillyl alcohol is an effective chemopreventive compound in the mouse lung tumor bioassay. J. Cell. Biochem. Suppl. 27:20-25. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 52-58 
    ISSN: 0730-2312
    Keywords: tea ; green tea ; tea polyphenols ; Polyphenon® ; tea catechins ; EGCg ; fecal flora ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Tea catechins undergo various metabolic changes after they are taken orally, though a large percentage are excreted intact with the feces. Epidemiological studies suggest a protective effect of tea against various human cancers, including colon and rectum. The bactericidal property of tea catechins plays several roles in the digestive tract. In the small intestine, catechins inhibit α-amylase activity, and a certain amount is absorbed into the portal vein. Although catechins are bactericidal, they do not affect lactic acid bacteria. Including tea catechins in the diet for several weeks decreases putrefactive products and increases organic acids by lowering pH. These changes were achieved in tube-fed patients by administering 100 mg of tea catechins (equivalent to a cup of green tea) three times daily with meals for 3 weeks. When catechin administration ceased, the effects reversed after 1 week. Catechins should be considered further in colon carcinogenesis studies. J. Cell. Biochem. Suppl. 27:52-58. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 67 (1997), S. 59-67 
    ISSN: 0730-2312
    Keywords: antioxidants ; black tea ; chemoprevention ; epigallocatechin-3-gallate ; green tea ; tea polyphenols ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In recent years, the concept of cancer chemoprevention has matured greatly. Significant reversal or suppression of premalignancy in several sites by chemopreventive agents appears achievable. This article summarizes experimental data on chemopreventive effects of tea polyphenols in different tumor bioassay systems. Tea (Camellia sinensis) is cultivated in about 30 countries, and is the most widely consumed beverage in the world. Three main commercial tea varieties - green, black, and oolong - are usually consumed, but most experimental studies demonstrating the antimutagenic and anticarcinogenic effects of tea have been conducted with water extract of green tea, or a polyphenolic fraction isolated from green tea (GTP). The majority of these studies have been conducted in a mouse skin tumor model system where tea is fed either as water extract through drinking water, or as purified GTP. GTP has been shown to exhibit antimutagenic activity in vitro, and inhibit carcinogen- as well as UV-induced skin carcinogenesis in vivo. Tea consumption has also been shown to afford protection against chemical carcinogen-induced stomach, lung, esophagus, duodenum, pancreas, liver, breast, and colon carcinogenesis in specific bioassay models. Several epicatechin derivatives (polyphenols) present in green tea have been shown to possess anticarcinogenic activity; the most active is (-)-epigallocatechin-3-gallate, which is also the major constituent of GTP. The mechanisms of tea's broad cancer chemopreventive effects are not completely understood. Several theories have been put forward, including inhibition of UV- and tumor promoter-induced ornithine decarboxylase, cyclo-oxygenase, and lipoxygenase activities, antioxidant and free radical scavenging activity; enhancement of antioxidant (glutathione peroxidase, catalase, and quinone reductase) and phase II (glutathione-S-transferase) enzyme activities; inhibition of lipid peroxidation, and anti-inflammatory activity. These properties of tea polyphenols make them effective chemopreventive agents against the initiation, promotion, and progression stages of multistage carcinogenesis. J. Cell. Biochem. Suppl. 27:59-67. Published 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 0730-2312
    Keywords: thiol conjugates ; isothiocyanates ; lung cancer prevention ; urinary biomarker ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Natural and synthetic isothiocyanates (ITCs) are versatile chemopreventive agents in many animal systems. We have shown that phenethyl ITC (PEITC) and 6-phenylhexyl ITC (PHITC) are potent inhibitors against lung tumorigenesis induced by tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in both mouse and rat. The mechanism by which these ITCs inhibited lung tumorigenesis is attributed to their ability to decrease cytochrome P450 (P450) enzyme activities involved in the activation of NNK. Recently, we have found that thiol conjugates of ITCs inhibit P450 enzymes and are effective inhibitors of lung tumorigenesis. This is significant because conjugation with cellular thiols is the major route of ITC metabolism via the mercapturic acid pathway in rodents and humans. The thiol conjugates are less pungent and potentially less toxic, and they are more soluble and chemically less reactive than ITCs. These properties raise the prospect of substituting thiol conjugates for ITCs as chemopreventive agents. Furthermore, although ample rodent studies have established that ITCs inhibit tumorigenesis, the protective role of dietary ITCs against human cancers has not yet been established. As a prerequisite for such human studies, we have developed an HPLC-based assay, based on the condensation reaction of ITCs or conjugates with 1,2-benzenedithiol, for measuring a cyclocondensation product in human urine as an uptake biomarker of total ITCs. This assay was validated using urine samples from subjects who had ingested a known amount of watercress or mustard in a controlled diet. The assay is convenient and rapid, showing promise for analyzing urine samples obtained from population-based studies. Results from two such studies are presented to illustrate the potential application of this biomarker in epidemiologic studies. J. Cell. Biochem. Suppl. 27:76-85. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 0730-2312
    Keywords: immortalized ; clonal ; alkaline phosphatase ; osteocalcin ; mineralization ; vitamin D3 ; dexamethasone ; parathyroid hormone ; interleukin-6 ; bone ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoblasts are established targets of estrogen action in bone. We screened 66 conditionally immortalized clonal human osteoblast cell lines for estrogen receptors (ERs) using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ERα mRNA and transactivation of adenovirus-estrogen response element (ERE)-tk-luciferase by 17β-estradiol (17β-E2) for functional ER protein. One of these cell lines, termed HOB-03-CE6, was chosen for further characterization. The cells, which were conditionally immortalized with a temperature-sensitive SV40 large T antigen, proliferated at the permissive temperature (34°C) but stopped dividing at the nonpermissive temperature (&ge 39°C). Alkaline phosphatase activity and osteocalcin secretion were upregulated by 1&agr 25-dihydroxyvitamin D3 in a dose-dependent manner. The cells also expressed type I collagen and other bone matrix proteins, secreted a variety of growth factors and cytokines, formed mineralized nodules based on alizarin red-S and von Kossa histochemical staining, and responded to dexamethasone, all-trans retinoic acid, and transforming growth factor-β1. This cell line expressed 42-fold less ER message than MCF-7 human breast cancer cells, as determined by quantitative RT-PCR. However, adenovirus-ERE-tk-luciferase activity was upregulated three- to fivefold in these cells by 17β-E2 with an EC50 of 64 pM. Furthermore, this upregulation was suppressed by co-treatment with the anti-estrogen ICI-182, 780. Cytosolic extracts of these cells specifically bound [125I]-17β-E2 in a concentration-dependent manner with a Bmax of 2.7 fmoles/mg protein (∼ 1,200 ERs/cell) and a Kd of 0.2 nM. DNA gel-shift analysis using a [32P]-ERE demonstrated the presence of ERs in nuclear extracts of these cells. Moreover, binding of the extracts to this ERE was blocked by a monoclonal antibody to the human ER DNA-binding domain. We evaluated these cells for 14 of 20 reported endogenous responses to 17β-E2 in osteoblasts. Although most of these responses appeared to be unaffected by the steroid, 17β-E2 suppressed parathyroid hormone-induced cAMP production, as well as basal interleukin-6 mRNA expression; conversely, the steroid upregulated the steady-state expression of alkaline phosphatase message in these cells. In summary, we have identified a clonal, conditionally phenotypic, human osteoblast cell line that expresses functional ERs and exhibits endogenous responses to 17β-E2. This cell line will be a valuable in vitro model for exploring some of the molecular mechanisms of estrogen action in bone. J. Cell. Biochem. 65:368-387. © 1997 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 420-429 
    ISSN: 0730-2312
    Keywords: osteosarcoma ; osteoprogenitors ; tyrphostins ; marrow-stroma ; quinazoline ; benzylidine-malononitrile ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Induction of matrix maturation and mineralization in calcified tissues is important for patients with primary bone tumors and other bone deficiencies, e.g., osteoporosis. For the former it signifies a better prognosis in osteosarcoma, and for the latter it might improve bone remodeling. In the present study we exposed osteosarcoma cells (Saos2), normal bone cells, and marrow stroma to two different tyrosine kinase (TK) inhibitors: AG-555 and AG-1478. These tyrphostins differ in their effect on signal transduction downstream to the TK receptor (RTK): AG-1478 inhibits src family TKs whereas AG-555 inhibits nuclear TKs. We found that both tyrphostins at 50 μM increased specific alkaline phosphatase (ALP) activity in Saos2 cells. AG-555 abrogated mineralization whereas AG-1478 increased it. Similarly, in human bone-derived cell cultures the same dose of tyrphostins had an opposing effect on mineralization but, in contrast to AG-555, AG-1478 positively selected cells with ALP activity. These tyrphostins also differed in their effect on rat marrow stromal cells. AG-555 decreased cell counts unselectively, whereas the decreased cell counts by AG-1478 resulted in selection of osteoprogenitor cells as indicated by a concordant increase in specific ALP activity. The effect of a lower dose of AG-1478, 5 μM, on the increase in mineralization exceeded its own efficiency in selecting cells with specific ALP activity. Our results indicate that AG-1478 selects and preserves the osteoblastic phenotype, at doses moderately higher than those required to induce mineralization, and substantially higher than the doses required for RTK inhibition. Identification of downstream molecular targets for AG-1478, in marrow stromal cells, might prove useful in designing more selective drugs, capable of separating proliferative from differentiation-inducing activities. J. Cell. Biochem. 65:420-429. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 0730-2312
    Keywords: dexamethasone ; nongenomic effect ; actin assembly ; signal transduction ; confocal microscopy ; total actin ; actin transcript ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Dexamethasone exerts a stimulatory effect of rapid-onset on the polymerization of actin. This has been documented in human endometrial adenocarcinoma Ishikawa cells, resulting in an acute, dose-dependent decrease in the G/total-actin ratio. In the present study we completely characterized this fast and apparently nongenomic effect of dexamethasone on actin assembly. We followed the morphological alterations of actin cytoskeleton and measured the time-dependent dynamics of actin polymerization both by ruling out any changes of total actin in the cells and by measuring its transcript. Rapid changes in actin polymerization were accurately measured using a highly sensitive and quantitative rhodamine-phalloidin fluorimetric assay. Ishikawa cells, exposed to 0.1 μM dexamethasone for various time periods up to 24 h, showed a highly significant, rapid, and transient increase in the polymerization of actin starting within 15 min of dexamethasone exposure and lasting 2 h. Treated cells showed a significant (1.79-fold) enhancement of the fluorescent signal compared to untreated cells at 15 min. This value decreased continuously in a time-dependent manner, reaching control levels after 120 min and remained so for the next 24 h. Confocal laser scanning microscopy studies confirmed these findings. Intensive coloration of microfilaments over several scanning sections suggested an enhanced degree of actin polymerization in cells preincubated for 15 min with 0.1 μM dexamethasone. Moreover, actin filaments were more resistant to cytochalasin B. Additionally, quantitative immunoblot analysis showed that the content of total cellular actin remained the same during this period, suggesting that the biosynthesis of actin was unaffected. Northern blot analysis showed that the concentration of the actin transcript was also unaffected. Our data suggest that glucocorticoids induce a fast and self-limited polymerization of actin in human endometrial cells without affecting its synthesis. These findings strengthen the hypothesis that glucocorticoids exert rapid, nongenomic cellular effects and that the actin-based cytoskeleton is an integral part of this pathway, playing an essential role in receiving and mediating steroid signals for the modulation of cellular responses. J. Cell. Biochem. 65:492-500. © 1997 Wiley-Liss Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 0730-2312
    Keywords: procollagen synthesis ; human osteosarcoma cells ; 1,25-dihydroxyvitamin D3 ; type I collagen ; proline hydroxylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The kinetics of type I procollagen synthesis in a human osteosarcoma cell line, MG 63, were investigated after treatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3), a hormonal inducer of phenotypic differentiation. Pulse label and chase experiments demonstrated greatly enhanced production and more rapid reduction of intracellular procollagen molecules in the 1,25-(OH)2 D3-treated cells as compared to the nontreated case. After a chase for 1 h, labeled procollagen was reduced by nine-tenths in 1,25-(OH)2 D3-treated cells, while half of the radioactivity still remained in nontreated cells. The expression rate of type I collagen, which was examined by pulse label experiment, was elevated in association with an increase in the mRNA coding for the type I collagen α1 chain by 1,25-(OH)2 D3 treatment. However, the amount of intracellular procollagen present after 4 h continuous labeling was almost the same, independent of the 1,25-(OH)2 D3 treatment. Thus, we conclude that strage of the molecule was not affected. The results therefore suggest an increase in both the synthesis and secretion of type I collagen. The 1,25-(OH)2 D3 treatment was also found to induce the α subunit of prolyl 4-hydroxylase and to be associated with an elevated level of hydroxyproline in the procollagen. Moreover, gelatinase B-resistant procollagen molecules, indicative of intracellular procollagen molecules in the stable triple helical form, were detected only in the 1,25-(OH)2 D3-treated cells. These data suggest more efficient proline hydroxylation is involved in rapid secretion of procollagen after hormone administration. The present evidence points to posttranslational control of procollagen synthesis. J. Cell. Biochem. 65:542-549. © 1997 Wiley-Liss Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 0730-2312
    Keywords: cell cycle ; p21 ; MyoD ; E2F ; doxorubicin/adriamicin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Doxorubicin (Dox, Adriamicin), a potent broad spectrum anthracycline anticancer drug, selectively inhibits muscle specific gene expression in cardiac cells in vivo and prevents terminal differentiation of skeletal muscle cells in vitro. By inducing the expression of the helix-loop-helix (HLH) transcriptional inhibitor Id2, Dox represses the myogenic function of the MyoD family of muscle regulatory factors (MRFs). In many cell types, terminal differentiation is coupled to an irreversible exit from the cell cycle and MyoD plays a critical role in the permanent cell cycle arrest of differentiating myocytes by upregulating the cyclin dependent kinase inhibitor (cdki) p21. Here, we correlate Dox effects on cell cycle with changes of E2F/DP complexes and activity in differentiating C2C12 myocytes. In Dox-treated quiescent myoblasts, which fail to differentiate into myotubes under permissive culture conditions, serum re-stimulation induces cyclin/cdk re-association on the E2F/DP complexes and this correlates with an evident increase in E2F/DP driven transcription and re-entry of myoblasts into the cell cycle. Despite Dox ability to activate the DNA-damage dependent p53/p21 pathway, when induced in the absence of MyoD or other MRFs, p21 fails to maintain the postmitotic state in Dox-treated myocytes induced to differentiate. Thus, uncoupling p21 induction and MyoD activity results in a serum-reversible cell cycle arrest, indicating that MRF specific activation of cdki(s) is required for permanent cell cycle arrest in differentiating muscle cells. J. Cell. Biochem. 66:27-36, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 77-86 
    ISSN: 0730-2312
    Keywords: skeletal cells ; transforming growth factor &Bgr ; transcripts ; bone formation ; local factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previously we have shown that transforming growth factor β (TGF β) 1, basic fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) BB inhibit the synthesis of insulin-like growth factor (IGF) II, but their effects on IGF binding protein (IGFBP)-6 in osteoblast cultures are not known. IGFBP-6 binds IGF II with high affinity and prevents IGF II-mediated effects, so that a possible mode of regulating the IGF II available to bone cells would be by changing the levels of IGFBP-6. To enhance our understanding of the actions of growth factors on the IGF II axis in bone, we tested the effects of TGF β1, basic FGF, PDGF BB, IGF I, and IGF II on the expression of IGFBP-6 in cultures of osteoblast-enriched cells from 22 day fetal rat calvariae (Ob cells). Treatment of Ob cells with TGF β1 caused a time- and dose-dependent decrease in IGFBP-6 mRNA levels, as determined by Northern blot analysis. The effect was maximal after 48 h and observed with TGF β1 concentrations of 0.04 nM and higher. TGF β1 also decreased IGFBP-6 polypeptide levels in the medium, as determined by Western immunoblot analysis. Cycloheximide at 3.6 μM decreased IGFBP-6 transcripts and prevented the effect of TGF β1. The decay of IGFBP-6 mRNA in transcriptionally arrested Ob cells was not modified by TGF β1. In addition, TGF β1 decreased the rates of IGFBP-6 transcription as determined by a nuclear run-on assay. In contrast, basic FGF, PDGF BB, IGF I, and IGF II did not change IGFBP-6 mRNA levels in Ob cells. In conclusion, TGF β1 inhibits IGFBP-6 expression in Ob cells by transcriptional mechanisms. Since IGFBP-6 binds IGF II and prevents its effects on bone cells, decreased synthesis of IGFBP-6 induced by TGF β1 could be a local feedback mechanism to increase the amount of IGF II available in the bone microenvironment. J. Cell. Biochem. 66:77-86, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 133-140 
    ISSN: 0730-2312
    Keywords: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ; RNA binding protein ; DNA replication ; DNA repair ; apoptosis ; triplet repeat neurodegenerative disorders ; nitric oxide ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) appeared to be an archtypical protein of limited excitement. However, independent studies from a number of different laboratories reported a variety of diverse biological properties of the GAPDH protein. As a membrane protein, GAPDH functions in endocytosis; in the cytoplasm, it is involved in the translational control of gene expression; in the nucleus, it functions in nuclear tRNA export, in DNA replication, and in DNA repair. The intracellular localization of GAPDH may be dependent on the proliferative state of the cell. Recent studies identified a role for GAPDH in neuronal apoptosis. GAPDH gene expression was specifically increased during programmed neuronal cell death. Transfection of neuronal cells with antisense GAPDH sequences inhibited apoptosis. Lastly, GAPDH may be directly involved in the cellular phenotype of human neurodegenerative disorders, especially those characterized at the molecular level by the expansion of CAG repeats. In this review, the current status of ongoing GAPDH studies are described (with the exception of its unique oxidative modification by nitric oxide). Consideration of future directions are suggested. J. Cell. Biochem. 66:133-140, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 0730-2312
    Keywords: phosphorylation ; interferon regulatory factor 2 ; transcription factor ; oncogene ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: IRF2 is a transcription factor, possessing oncogenic potential, responsible for both the repression of growth-inhibiting genes (interferon) and the activation of cell cycle-regulated genes (histone H4). Surprisingly little is known about the post-translational modification of this factor. In this study, we analyze the phosphorylation of IRF2 both in vivo and in vitro. Immunoprecipitation of HA-tagged IRF2 expressed in 32P-phosphate labelled COS-7 cells demonstrates that IRF2 is phosphorylated in vivo. Amino acid sequence analysis reveals that several potential phosphorylation sites exist for a variety of serine/threonine protein kinases, including those of the mitogen activated protein (MAP) kinase family. Using a battery of these protein kinases we show that recombinant IRF2 is a substrate for protein kinase A (PKA), protein kinase C (PKC), and casein kinase II (CK2) in vitro. However, other serine/threonine protein kinases, including the MAP kinases JNK1, p38, and ERK2, do not phosphorylate IRF2. Two-dimensional phosphopeptide mapping of the sites phosphorylated by PKA, PKC, and CKII in vitro demonstrates that these enzymes are capable of phosphorylating IRF2 at multiple distinct sites. Phosphoaminoacid analysis of HA-tagged IRF2 immunoprecipitated from an asynchronous population of proliferating, metabolically phosphate-labelled cells indicates that this protein is phosphorylated exclusively upon serine residues in vivo. These results suggest that the oncogenic protein IRF2 may be regulated via multiple pathways during cellular growth. J. Cell. Biochem. 66:175-183, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 210-218 
    ISSN: 0730-2312
    Keywords: collagen type X ; gene regulation ; calcium phosphate ; reporter gene ; transfection ; hypertrophic chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Collagen type X is a short, network-forming collagen expressed temporally and spatially tightly controlled in hypertrophic chondrocytes during endochondral ossification. Studies on chicken chondrocytes indicate that the regulation of type X collagen gene expression is regulated at the transcriptional level. In this study, we have analyzed the regulatory elements of the human type X collagen (Col10a1) by reporter gene constructs and transient transfections in chondrogenic and nonchondrogenic cells. Four different promoter fragments covering up to 2,864 bp of 5′-flanking sequences, either including or lacking the first intron, were linked to luciferase reporter gene and transfected into 3T3 fibroblasts, HT1080 fibrosarcoma cells, prehypertrophic chondrocytes from the resting zone, hypertrophic chondrocytes, and chondrogenic cell lines. The results indicated the presence of three regulatory elements in the human Col10a1 gene besides the proximal promoter. First, a negative regulatory element located between 2.4 and 2.8 kb upstream of the transcription initiation site was active in all nonchondrogenic cells and in prehypertrophic chondrocytes. Second, a positive, but also non-tissue-specific positive regulatory element was present in the first intron. Third, a cell-type-specific enhancer element active only in hypertrophic chondrocytes was located between -2.4 and -0.9 kb confirming a previous report by Thomas et al. [(1995): Gene 160:291-296]. The enhancing effect, however, was observed only when calcium phosphate was either used for transfection or included in the culture medium after lipofection. These findings demonstrate that the rigid control of human Col10a1 gene expression is achieved by both positive and negative regulatory elements in the gene and provide the basis for the identification of factors binding to those elements. J. Cell. Biochem. 66:210-218, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 256-267 
    ISSN: 0730-2312
    Keywords: zinc ; IGFBP ; IGF ; des-(1-3)-IGF-I ; receptor ; fibroblasts ; glioblastoma ; kidney epithelial cells ; affinity ; T98G ; GM10 ; MDBK ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (〉 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (〉 80% for GM10 and T98G cells and 〉 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 394-403 
    ISSN: 0730-2312
    Keywords: hypertrophic ; growth plate ; type X ; alkaline phosphatase ; sternum ; chicken ; avian ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In serum-containing medium, ascorbic acid induces maturation of prehypertrophic chick embryo sternal chondrocytes. Recently, cultured chondrocytes have also been reported to undergo maturation in the presence of bone morphogenetic proteins or in serum-free medium supplemented with thyroxine. In the present study, we have examined the combined effect of ascorbic acid, BMP-2, and serum-free conditions on the induction of alkaline phosphatase and type X collagen in chick sternal chondrocytes. Addition of either ascorbate or rhBMP-2 to nonconfluent cephalic sternal chondrocytes produced elevated alkaline phosphatase levels within 24-72 h, and simultaneous exposure to both ascorbate and BMP yielded enzyme levels at least threefold those of either inducer alone. The effects of ascorbate and BMP were markedly potentiated by culture in serum-free medium, and alkaline phosphatase levels of preconfluent serum-free cultures treated for 48 h with BMP + ascorbate were equivalent to those reached in serum-containing medium only after confluence. While ascorbate addition was required for maximal alkaline phosphatase activity, it did not induce a rapid increase in type X collagen mRNA. In contrast, BMP added to serum-free medium induced a three- to fourfold increase in type X collagen mRNA within 24 h even in the presence of cyclohexamide, indicating that new protein synthesis was not required. Addition of thyroid hormone to serum-free medium was required for maximal ascorbate effects but not for BMP stimulation. Neither ascorbate nor BMP induced alkaline phosphatase activity in caudal sternal chondrocytes, which do not undergo hypertrophy during embryonic development. These results indicate that ascorbate + BMP in serum-free culture induces rapid chondrocyte maturation of prehypertrophic chondrocytes. The mechanisms for ascorbate and BMP action appear to be distinct, while BMP and thyroid hormone may share a similar mechanism for induction. J. Cell. Biochem. 66:394-403, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 441-449 
    ISSN: 0730-2312
    Keywords: mitosin ; CENP-F ; spindle pole ; kinetochore ; centromere ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mitosin is a nuclear protein of 3,113 amino acids which has been shown to associate with the mitotic apparatus, especially the kinetochore, during mitosis. In this paper we further confirmed its association with the spindle poles in normal monkey kidney CV1 cells by indirect immunofluorescence microscopy. When the carboxyl portion of mitosin containing amino acids 2,094-3,113 (named mitosin-pTN) was stably expressed in rat fibroblast Rat2 cells using a tetracycline-inducible system, strong spindle pole association was observed in addition to expected centromere localization. The same results were achieved in Chinese hamster ovary (CHO) cells. On the other hand, mitosin-pTC containing amino acids 2,756-3,113 was not targeted to spindle poles. Use of the FLAG epitope [Hopp et al., 1988] genetically fused to each amino terminus of these mutants eliminated possible artifacts due to antibody cross-reaction, since the spindle pole localization of wild-type mitosin was confirmed with a FLAG-tagged mutant by an antibody (anti-FLAG M2 monoclonal antibody) irrelevant to antibodies to mitosin. Our data also suggested a possible interaction of mitosin with the spindle microtubules. Interaction of mitosin with the major parts of the mitotic apparatus further implies an important role in mitosis. J. Cell. Biochem. 66:441-449, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 524-531 
    ISSN: 0730-2312
    Keywords: MBP ; brain development ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Myelin basic protein (MBP) is a major component of the myelin sheath whose production is developmentally controlled during myelinogenesis. Earlier studies have indicated that programmed expression of the MBP gene is regulated at the level of transcription. Evidently, the MB1 regulatory motif located between nucleotides -14 to -50 plays an important role in transcription of the MBP promoter in both in vitro and in vivo systems. The MB1 element contains binding sites for the activator protein MEF-1/Pur α and the repressor protein MyEF-2. In this study we use bandshift assays with purified MEF-1/Pur α and MyEF-2 and demonstrate that binding of MyEF-2 to its target sequence is inhibited by MEF-1/Pur α. Under similar conditions, MyEF-2 enhances the association of MEF-1/Pur α with MB1 DNA. MEF-1/Pur α binds to MB1 in mono- and dimeric forms. Inclusion of MyEF-2 in the binding reaction increases the dimeric association of MEF-1/Pur α with the MB1 sequence. The use of MEF-1/Pur α variants in the bandshift assay suggests that two distinct regions of this protein may be involved in its binding to the MB1 sequences, and its ability to block MyEF-2 interaction with the MB1 sequence. Based on previous studies on the programmed expression of MEF-1/Pur α and MyEF-2 during myelination and the current findings on their interplay for binding to the MB1 motif, a model is proposed for their involvement in transcriptional regulation of the MBP gene during the course of brain development. J. Cell. Biochem. 66:524-531, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 33-42 
    ISSN: 0730-2312
    Keywords: apoptosis ; cysteine proteases ; CPP32 ; Mch2 ; Mch3 ; Mch4 ; Mch5 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: So far nine human aspartate-specific cysteine proteases (ASCPs) have been identified and cloned in our lab and others. Their sequence and structural homology to the nematode Ced-3 implicated them in the cell death pathway of mammalian cells. Recent evidence suggests that ASCPs initiate apoptosis by acting at or near the cell death effector level. However, it is not clear whether the activity of one or several of these enzymes is necessary for execution of apoptosis. In addition, it is not yet clear how the proenzymes of ASCPs are activated or what triggers their activation. Execution of apoptosis in higher eukaryotes is apparently more complicated than in nematodes. It is most likely that in mammalian cells this process involves the coordinated action of multiple ASCPs and multiple redundant proteolytic pathways. J. Cell Biochem. 64:33-42. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 295-312 
    ISSN: 0730-2312
    Keywords: osteoblast ; glucocorticoids ; hydroxyapatite ; osteoprogenitor ; bone marrow ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM β-glycerophosphate (βGP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM βGP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number or APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes. J. Cell. Biochem. 64:295-312. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 343-352 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 353-368 
    ISSN: 0730-2312
    Keywords: transforming growth factor α ; “TGFαase” ; ultraviolet radiation ; cell surface proteases ; HeLa cells ; membrane fragments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have investigated the effect of UVC irradiation on “TGFαase” activity using both intact HeLa cells and isolated membrane fragments with an assay based on the previously described nonapeptide substrate method [Brown et al. (1992): J Cell Biochem 48:411-423]. This method allows recognition of cleavage at the scissile bond cognate with that of the TGFα N-terminal cleavage site from its membrane-bound precursor. The level of ectoendopeptidase (including “TGFαase”) activity observed on intact cells was lower than that of ectoaminopeptidases. Addition of foetal bovine serum (FBS) enhanced aminopeptidase and dipeptidyl peptidase activity but inhibited “TGFαase” activity, while phorbol 12-myristate 13-acetate (PMA) had no significant effect on the ectopeptidases monitored, except for “TGFαase,” which was also inhibited, in contradistinction to their effects in other cell systems. Sublethal UVC irradiation (10 Jm 2) of the cultures resulted in activation of the ectoaminopeptidase and ectoendopeptidases which was maximal 16 and 20-24 h after irradiation, respectively. The addition of FBS to these irradiated cells appeared to reduce the increase in endopeptidase products, due in part to increased aminopeptidase activity but also to the direct inhibitory effect of FBS on the “TGFαase.” The activation of these proteases by UVC, even at high fluences (500 Jm 2), was not observed within the first 30 min after the cells were irradiated. Purified plasma membrane fragments were prepared from suspension cultures of HeLa cells and displayed high levels of “TGFαase” activity. The rate of “TGFαase” activity using 140 nM peptide substrate (P9) was 5.6 pmol/min/mg membrane protein, which was elevated to 13.7 pmol/min/mg membrane protein, 20 h after the cells had been irradiated with 10 Jm 2 UVC. Inhibition studies indicate that the plasma membrane “TGFαase” is a metalloenzyme, as it was inhibited by EDTA, EGTA, and 1,10-phenanthroline but not by elastase or serine protease inhibitors. “TGFαase” activity on intact cells was shown to be inhibited by 1,10-phenanthroline, which further supports this suggestion. Treatment of the membranes with Triton X-100 resulted in a loss of “TGFαase” activity, raising the possibility that this enzyme may require a cofactor to be fully functional. We show that in purified membrane preparations of HeLa cells there is evidence for the presence of a “TGFαase” which can be activated by UV irradiation, which differs from the putative “TGFαase” described in various other cell lines, and which does not seem dependent on protein kinase C (PKC) activity. J. Cell. Biochem. 64:353-368. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 390-402 
    ISSN: 0730-2312
    Keywords: carboxy-terminal repeat domain (CTD) ; RNA polymerase II ; cyclin-dependent kinases ; phosphorylation ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cdc2 kinase triggers the entry of mammalian cells into mitosis, the only cell cycle phase in which transcription is globally repressed. We show here that Cdc2 kinase phosphorylates components of the RNA polymerase II transcription machinery including the RNA polymerase II carboxy-terminal repeat domain (CTD). To test specifically the effect of CTD phosphorylation by Cdc2 kinase, we used a yeast in vitro transcription extract that is dependent on exogenous RNA polymerase II that contains a CTD. Phosphorylation was carried out using immobilized Cdc2 so that the kinase could be removed from the phosphorylated polymerase. ATPγS and Cdc2 kinase were used to produce an RNA polymerase 110 that was not detectably dephosphorylated in the transcription extract. RNA polymerase 110 produced in this way was defective in promoter-dependent transcription, suggesting that phosphorylation of the CTD by Cdc2 kinase can mediate transcription repression during mitosis. In addition, we show that phosphorylation of pol II with the human TFIIH-associated kinase Cdk7 also decreases transcription activity despite a different pattern of CTD phosphorylation by this kinase. These results extend previous findings that RNA polymerase 110 is defective in preinitiation complex formation. Here we demonstrate that phosphorylation of the CTD by cyclin-dependent kinases with different phosphoryl acceptor specificities can inhibit transcription in a CTD-dependent transcription system. J. Cell. Biochem. 64:390-402. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 0730-2312
    Keywords: PDGF ; PDGF receptor ; cell migration ; endothelial cell ; endothelium ; angiogenesis ; in vitro ; urokinase-type plasminogen activator ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To explore direct effects of platelet-derived growth factor (PDGF) on endothelial cells during angiogenesis in vitro, we have used cloned bovine aortic endothelial cells that spontaneously form cord structures. Recently we have shown that cells forming these endothelial cords express PDGF β-receptors and that PDGF-BB can contribute to cellular proliferation and cord formation. In this study we investigated whether PDGF-induced cellular migration might also contribute to endothelial repair and angiogenesis in vitro.Ten individual endothelial cells in cords were tracked at an early stage of cord formation by video-timelapse microscopy. PDGF-BB (100 ng/ml) induced an increase in endothelial cell movement of 67 ± 15% as compared with diluent control. Interestingly, PDGF-BB also increased movements of entire cord structures, followed at branching points, by 53 ± 12% over diluent control. Taken together, these video-timelapse experiments suggested that the apparent movements of single endothelial cord cells might also be due to the motion of entire underlying cord structures in response to PDGF. To analyze the response of single endothelial cord cells we therefore examined whether PDGF-induced migration contributes to endothelial repair. Abrasions were applied with a razor blade to confluent monolayers of endothelial cells at an intermediate stage of cord formation. PDGF-BB concentration-dependently increased the distance to which cord-forming endothelial cells migrated into the abrasion. An increased number of elongated, i.e., probably migrating, endothelial cells was found in the abrasion in response to PDGF-BB. However, there was no effect of PDGF-BB on the total number of endothelial cells found in the abrasion. PDGF-AA affected neither the distance to which the cells migrated nor the number of elongated cells.Actin and tubulin stainings revealed that these cytoskeletal structures were not appreciably altered by PDGF-BB. Furthermore, urokinase-type plasminogen activator transcripts were not modulated in response to PDGF-BB.We conclude that in this model of angiogenesis in vitro PDGF-BB can elicit the movement of entire cord structures, possibly via u-PA-independent mechanisms. PDGF-BB also controls the migration of single cord-forming endothelial cells. Thus, PDGF-BB possibly contributes to endothelial repair and angiogenesis by direct effects on proliferation and composite movements of PDGF β-receptor-expressing endothelial cells and cords. J. Cell. Biochem. 64:403-413. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 32-41 
    ISSN: 0730-2312
    Keywords: bFGF ; interstitial collagenase ; mRNA ; extracellular matrix ; atherosclerosis and restenosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Basic fibroblast growth factor (bFGF) is a mitogenic factor that is implicated in smooth muscle cell growth in atherosclerosis and vascular restenosis. In this study, we examined the effect of bFGF on the expression of the interstitial collagenase gene in human vascular smooth muscle cells. Results from Northern transfer analysis showed that bFGF increased collagenase mRNA levels greater than threefold as early as 24 h. Collagenase pre-mRNA levels were elevated approximately threefold by bFGF, according to RT-PCR analysis. Transient transfections of the smooth muscle cells with a 4.4-kb human collagenase promoter-CAT reporter gene, however, failed to show upregulation of the promoter activity by bFGF. Interestingly, transfections with deleted fragments containing promoter sequences from -1047 to -2271 resulted in modest stimulation of the collagenase-CAT promoter activity by bFGF. bFGF did not alter the stability of the collagenase mRNA, as demonstrated by degradation studies. The enhanced collagenase mRNA levels elicited by bFGF were reflected in increased amounts of collagenase protein that were detected by Western blot analysis. In summary, bFGF upregulates the interstitial collagenase expression, resulting in turnover of the extracellular matrix, an event that could facilitate smooth muscle cell migration and proliferation during the early stages of atherosclerosis and restenosis. J. Cell. Biochem. 65:32-41. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0730-2312
    Keywords: adenylyl cyclase ; MAP kinase ; G protein ; βγ subunit ; Xenopus oocyte ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Using transient transfection of COS-7 and human embryonic kidney 293 cells, we studied the functional properties of a previously cloned muscarinic Xenopus receptor [Herrera et al. (1994): FEBS Lett 352:175-179] and its coupling to adenylyl cyclase (AC) and mitogen-activated protein kinase (MAPK) pathways. Expression of the Xenopus muscarinic receptor results in the inhibition of AC activity and activation of the MAPK pathway through a mechanism that involves a Pertussis-sensitive G-protein and the Gβγ subunits. The signal transduction properties of this receptor are similar to the mammalian m2 and m4 muscarinic receptors. These results strongly support the idea that inhibition of AC and MAPK activation, signaled out from the muscarinic oocyte receptor, are involved in the oocyte maturation process. J. Cell. Biochem. 65:75-82. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 0730-2312
    Keywords: breast cancers ; genomic sequencing ; 5-methyldeoxycytidine ; multiple component analysis ; pS2 ; RT-PCR ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: pS2 gene has been used to investigate the relationship between alterations of DNA methylation patterns in human tumors and gene expression. The expression of pS2, which is transcriptionally controlled by estrogens in breast cancer cell lines, is restricted to estrogen-receptor-rich human breast tumors. We found that the CCGG site within the promoter/enhancer sequence of pS2 was hypomethylated in estrogen-receptor-rich breast tumors expressing this gene. The amount of DNA molecules unmethylated at this site was related to the amount of pS2 mRNA detected in the samples. The demethylation of this region, which contains the estrogen responsive element, was confirmed by genomic sequencing. Transient expression of functional human estrogen receptors stimulated the expression of the endogenous pS2 in HeLa cells, but failed, in BT-20 cells, to stimulate expression of this gene. Since the promoter/enhancer region of pS2 is unmethylated in HeLa cells and methylated in BT-20 cells, these data also support the hypothesis that DNA methylation might be involved in the control of pS2 expression. J. Cell. Biochem. 65:95-106. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 0730-2312
    Keywords: annexin V ; extracellular matrix ; cell surface ; chondrosarcoma ; chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Annexin V has been characterized as a major collagen type II binding cell-surface component of normal chondrocytes and is also called anchorin CII in chondrogenic populations. Herein we present evidence that in vitro cultured Swarm rat chondrosarcoma cells are not capable of binding collagen type II in significant quantities to their surfaces, as compared to normal rat chondrocytes. This finding coincides with a deficiency of annexin V on the surface of these cells. A small quantity of an intracellular polypeptide could be detected which is immunologically cross-reactive with annexin V but displayed a mobility in SDS-PAGE of less than 34 kD compared to the Mr 36 kD of intact rat annexin V. By immunohistochemistry the protein could be localized in the cytoplasm of in vitro and in vivo grown tumor cells. By reverse transcription-polymerase chain reaction and Northern blot analysis, a regular-sized mRNA for annexin V could be detected in the chondrosarcoma cells that is expressed in only slightly lower quantities than in normal chondrocytes. Taken together, the data suggest a modified processing or turnover for annexin V in the chondrosarcoma excluding it from being a functionally active collagen type II binding protein. The findings support the hypothesis of cell-surface annexin V as a key component for the formation of the pericellular matrix of chondrocytes. J. Cell. Biochem. 65:131-144. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 586-594 
    ISSN: 0730-2312
    Keywords: Fas ; apoptosis ; RB ; ICE ; protease ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fas antigen is a member of the tumor necrosis factor/nerve growth factor receptor family. Stimulation of Fas by Fas ligand or agonistic antibodies results in the activation of interleukin-1β converting enzyme-like (ICE-like) proteases, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Ultimately, Fas activation leads to apoptotic cell death. The importance of PARP cleavage to the death process remains unclear. We have hypothesized that the cleavage of other cellular substrates may be important for Fas-mediated apoptosis. Here we show that stimulation of Fas results in significant alterations of retinoblastoma protein (RB). Treatment of Jurkat cells, a human leukemic T cell line, with anti-Fas induces dephosphorylation of RB, followed by proteolytic cleavage. These events precede internucleosomal DNA fragmentation. Dephosphorylation and cleavage of RB are inhibited by a specific tetrapeptide inhibitor of ICE-like proteases or by expression of cowpox virus CrmA protein or the Bcl-2 oncoprotein. Inhibition of these RB changes correlates with inhibition of apoptosis. We propose that cleavage of RB may represent an important step in the pathway of Fas-mediated apoptotic cell death. J. Cell. Biochem. 64:586-594. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 632-643 
    ISSN: 0730-2312
    Keywords: calcification ; proteoglycans ; chondrocyte culture ; micro-mass culture ; cartilage calcification ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In the presence of 4 mM inorganic phosphate, differentiating chick limb-bud mesenchymal cells plated in micromass cultures form a mineralized matrix resembling that of chick calcified cartilage. To test the hypothesis that cartilage proteoglycans are inhibitors of cell mediated mineralization, the synthesis, content, and turnover of proteoglycans were altered in this system, and the extent of mineralization and properties of the mineral crystals examined. In all cases where the proteoglycan synthesis or proteoglycans present were modified to provide fewer or smaller molecules, mineralization was enhanced. Specifically, when proteoglycan synthesis was blocked by treatment with 10-10 M retinoic acid, extensive mineral deposition occurred on a matrix devoid of both proteoglycans and cartilage nodules. The crystals, which formed rapidly, were relatively large in size based on analysis by X-ray diffraction or FT-IR microspectroscopy, and were more abundant than in controls. When 2.5 or 5 mM xylosides were used to cause the synthesis of smaller proteoglycans, the extent of mineral accretion was also increased relative to controls; however, the matrix was less affected, and the extent of mineral deposition and the size of the crystals were not as markedly altered as in the case of retinoic acid. Modification of existing proteoglycans by either chondroinase ABC or hyaluronidase treatment similarly resulted in increased mineral accretion (based on 45Ca uptake or total Ca uptake) relative to cultures in which the proteoglycan content was not manipulated. Crystals were more abundant and larger than in control mineralizing cultures. In contrast, when proteoglycan degradation by metalloproteases was inhibited by metal chelation with o-phenanthroline, the Ca accretion at early time points was increased, but as mineralization progressed, Ca accumulation decreased. These data provide evidence that in this culture system, proteoglycans are inhibitors of mineralization. J. Cell. Biochem. 64:632-643. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 651-660 
    ISSN: 0730-2312
    Keywords: TGF-α ; mitogenic signal ; tyrosine kinase activity ; SP1 ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In an attempt to elucidate the mechanism by which c-myc and transforming growth factor-α (TGF-α) cooperate in hepatocyte tumor development, we have analyzed signaling by the epidermal growth factor (EGF) receptor and the consequent regulation of receptor number in transgenic mice bearing the c-myc transgene under the control of the albumin enhancer/promoter. 125I-EGF binding and Scatchard analysis indicated a single class of high affinity receptors with the total number of binding sites of 1.2 × 104 ± 600 and 2.5 × 105 ± 1000 sites/cell in the normal and c-myc hepatocytes in primary culture, respectively. After 72 h of EGF exposure in culture, the number of detectable EGF receptors on the cell surface of the c-myc hepatocytes was not reduced, whereas the number of EGF receptors on normal hepatocytes was reduced to 32% that of untreated hepatocytes. Nuclear run-on experiments done with nuclei isolated from intact livers demonstrated that transcription of the EGF receptor was 4.9-fold higher in c-myc mice. Increased levels of the transcriptional factor SP1 in the c-myc hepatocytes in vivo and in primary culture, suggest a mechanism for the increased transcription of the EGF receptor. c-myc also increases the expression of TGF-α; a consequent increase in tyrosine phosphorylation is also detected in vivo. Thus, the increased number of EGF receptors in c-myc expressing hepatocytes, even after prolonged exposure to EGF, or TGF-α in vivo, may allow greater triggering of the EGF receptor signaling cascade. J. Cell. Biochem. 64:651-660. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 11-24 
    ISSN: 0730-2312
    Keywords: basic helix-loop-helix proteins ; E-box ; differentiation ; transcription ; transfection ; osteocalcin ; ld ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoblasts undergo a temporal sequence of development characterized by transcriptional upregulation of osteoblast-specific genes. Basic helix-loop-helix (bHLH) transcription factors may control this developmental process through binding to E-box cis-acting elements in developmentally regulated genes. To investigate the role of bHLH proteins in MC3T3-E1 osteoblasts, which undergo a developmental sequence in vitro, we analyzed the transcriptional control of osteocalcin gene expression by stable transfection of an osteocalcin promoter-luciferase chimeric gene (p637OC-luc) and assessed the role of E-box cis-acting elements in osteocalcin promoter by DNA binding assays. We compared our findings in MC3T3-E1 osteoblasts with transient DNA transfections and DNA binding assays. We compared our findings in MC3T3-E1 osteoblasts with transient DNA transfections and DNA binding experiments in Ros 17/2.8 osteoblasts. We found that the activity of 637-OC luciferase promoter was low in undifferentiated 5-day-old cultures but increased in parallel with endogenous osteocalcin message expression in mature MC3T3-E1 osteoblasts, consistent with developmental stage-specific transcriptional upregulation of the osteocalcin gene. We identified two putative E-box elements in the proximal osteocalcin promoter, E-box 1 (CACATG) at - 102 and E-box 2 (CAGCTG) at position - 149. In gel mobility shift assays, factors present in nuclear extracts derived from differentiated osteoblast bound to oligonucleotide probes containing the E-box 1 and E-box 2 elements. Binding to the E-box 2 probe was not specific for the core CAGCTG element, whereas the CACATG site in E-box 1 oligonucleotide was required for specific binding of these nuclear factors. Stable transfection of p637OC-luc containing a mutant E1 site (p637OC-luc E1m), however, did not alter the developmental upregulation of osteocalcin promoter activity in MC3T3-E1 osteoblasts. Moreover, the E-box 1 mutation had no effect on either basal or vitamin D-stimulated activity of the osteocalcin promoter in Ros 17/2.8 osteoblasts in transient transfection experiments. These data suggest that osteoblasts contain undefined factors that bind to the E-box 1 CACATG site in the proximal osteocalcin promoter; however, this E-box element does not play a significant role in the developmental stage-specific regulation of the osteocalcin gene in MC3T3-E1 osteoblasts. J. Cell. Biochem. 65:11-24. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 53-66 
    ISSN: 0730-2312
    Keywords: intracellular calcium ; Pertussis toxin-sensitive G-protein ; phospholipase C ; creatinine kinase ; gender-specificity ; antiestrogens ; estrogen mimetic ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the early effects of the anti-idiotypic antibody (clone 1D5), which recognized the estrogen receptor (ER), on cytosolic free calcium concentration ([Ca2+]i) and its long term effects on creatine kinase (CK) specific activity in female human and rat osteoblasts. These actions were compared to the known membrane and genomic effects of 17β estradiol (E2). Like E2, clone 1D5 increased within 5 s [Ca2+]i in both cell types by two mechanisms: 1) Ca2+ influx through voltage-gated Ca2+ channels as shown by using EGTA, a chelator of extracellular Ca2+, and nifedipine, a Ca2+ channel blocker; 2) Ca2+; mobilization from the endoplasmic reticulum as shown by using phospholipase C inhibitors, such as neomycin and U-73122, which involved a Pertussis toxin-sensitive G-protein. Clone 1D5 and E2 stimulated CK specific activity in human and rat osteoblasts with ten fold higher concentrations than those needed for the membrane effects (0.1 μg/ml and 10 pM, respectively). Both effects were gender-specific since testosterone and 5α-dihydotesterone were uneffective. Tamoxifen and Raloxifene, two estrogen nuclear antagonists, inhibited CK response to 1D5 and E2 and Ca2+ response to 1D5, but not CA2+ response to E2. By contrast, (Fab′)2 dimer, a proteolytic fragment of 1D5 with antagonist properties, inhibited both membrane and genomic effects of 1D5 and E2. In conclusion, these results imply that clone 1D5 has an estrogen like activity both at the membrane and nuclear levels in female human and rat osteoblasts. 1D5 must therefore interact with membrane binding sites, penetrate the cells, and reach the nuclear receptors by an as yet uncharacterized mechanism. J. Cell. Biochem. 65:53-66. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 83-94 
    ISSN: 0730-2312
    Keywords: E2F1 ; E2F1d87 ; NIH3TH ; fibroblasts ; p34cdc2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The E2F1 transcription factor or an amino terminal deletion mutant termed E2F1d87 was constitutively expressed in NIH3T3 fibroblasts. Cells expressing wild-type E2F1 display a morphology indistinguishable from that of normal fibroblasts. However, the E2F1d87-expressing cells exhibited a distinct rounding during culture in media containing 10% calf serum. The morphology change was most pronounced during S phase, which was considerably lengthened in the E2F1d87-expressing cells. Consistent with this rounded shape, the E2F1d87-expressing cells have significantly increased levels of both p34cdc2 mRNA and protein. Also observed was an increase in active p34cdc2 in immunoprecipitates from extracts of the E2F1d87 cell line, as assayed by histone H1 kinase assay. The upregulation of p34cdc2 expression occurs at the transcriptional level and requires ectopic E2F1d87 along with serum growth factor stimulation, since culture of these cells in low serum media results in a flattened shape and a drop in p34cdc2 expression compared to that of the control cells. J. Cell. Biochem. 65:83-94. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 114-130 
    ISSN: 0730-2312
    Keywords: chromatin ; histone ; mitosis ; nuclear matrix ; nucleolus ; micromanipulation ; tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chromatin is thought to be structurally discontinuous because it is packaged into morphologically distinct chromosomes that appear physically isolated from one another in metaphase preparations used for cytogenetic studies. However, analysis of chromosome positioning and movement suggest that different chromosomes often behave as if they were physically connected in interphase as well as mitosis. To address this paradox directly, we used a microsurgical technique to physically remove nucleoplasm or chromosomes from living cells under isotonic conditions. Using this approach, we found that pulling a single nucleolus or chromosome out from interphase or mitotic cells resulted in sequential removal of the remaining nucleoli and chromosomes, interconnected by a continuous elastic thread. Enzymatic treatments of interphase nucleoplasm and chromosome chains held under tension revealed that mechanical continuity within the chromatin was mediated by elements sensitive to DNase or micrococcal nuclease, but not RNases, formamide at high temperature, or proteases. In contrast, mechanical coupling between mitotic chromosomes and the surrounding cytoplasm appeared to be mediated by gelsolin-sensitive microfilaments. Furthermore, when ion concentations were raised and lowered, both the chromosomes and the interconnecting strands underwent multiple rounds of decondensation and recondensation. As a result of these dynamic structural alterations, the mitotic chains also became sensitive to disruption by restriction enzymes. Ion-induced chromosome decondensation could be blocked by treatment with DNA binding dyes, agents that reduce protein disulfide linkages within nuclear matrix, or an antibody directed against histones. Fully decondensed chromatin strands also could be induced to recondense into chromosomes with pre-existing size, shape, number, and position by adding anti-histone antibodies. Conversely, removal of histones by proteolysis or heparin treatment produced chromosome decondensation which could be reversed by addition of histone H1, but not histones H2b or H3. These data suggest that DNA, its associated protein scaffolds, and surrounding cytoskeletal networks function as a structurally-unified system. Mechanical coupling within the nucleoplasm may coordinate dynamic alterations in chromatin structure, guide chromosome movement, and ensure fidelity of mitosis. J. Cell. Biochem. 65:114-130. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 159-171 
    ISSN: 0730-2312
    Keywords: breast cancer ; droloxifene ; estrogen replacement therapy ; apoptosis ; osteoclasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The incidence of postmenopausal osteoporosis is increasing as the population ages. Even though estrogen replacement therapy has proven beneficial in reducing the number of skeletal fractures, the known risks and associated side-effects of estrogen replacement therapy make compliance poor. Recent research has focused on the development of tissue specific estrogen agonist/anatagonists such as droloxifene which can prevent estrogen deficiency-induced bone loss without causing uterine hypertrophy. Furthermore, droloxifene acts as a full estrogen antagonist on breast tissue and is being evaluated for treatment of advanced breast cancer. In this report we propose a common mechanism of action for droloxifene that underlies its estrogen agonist and antagonist effects in different tissues. Droloxifene and estrogen, which have identical effects on bone in vivo, both induced p53 expression and apoptosis in cells of in vitro rat bone marrow cultures resulting in a decrease in the number of bone-resorbing osteoclasts. Droloxifene is growth inhibitory in MCF-7 human breast cancer cells and therefore acts as an antagonist, whereas estrogen is mitogenic to these cells and acts as an agonist. Droloxifene, but not estrogen, induced p53 expression and apoptosis in MCF-7 cells. These results indicate that the induction of apoptosis by droloxifene may be the common mechanism for both its estrogen agonist effects in bone and its antagonist effects in breast tissue. J. Cell. Biochem. 65:159-171. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 0730-2312
    Keywords: bone sialoprotein ; gene regulation ; mineralized tissues ; TGF-β1 ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β (TGF-β) increases steady-state mRNA levels of several extracellular matrix proteins in mineralized connective tissues. Bone sialoprotein (BSP) is a major constituent of the bone matrix, thought to initiate and regulate the formation of mineral crystals. To determine the molecular pathways of TGF-β1 regulation of bone proteins, we have analyzed the effects of the TGF-β1 on the expression of the BSP in the rat osteosarcoma cell line (ROS 17/2.8). TGF-β1 at 1 ng/ml, increased BSP mRNA levels in ROS 17/2.8 cells ∼8-fold; the stimulation was first evident at 3 hr, reached maximal levels at 12 hr and slowly declined thereafter. Since the stability of the BSP mRNA was not significantly affected by TGF-β1, and nuclear “run-on” transcription analyses revealed only a ∼2-fold increase in the transcription of the BSP gene, most of the increase in BSP mRNA appeared to involve a nuclear post-transcriptional mechanism. Moreover, the effects of TGF-β1 were indirect, since the increase in BSP mRNA was abrogated by cycloheximide (28 μg/ml). To identify the site of transcriptional regulation by TGF-β1, transient transfection analyses were performed using BSP gene promoter constructs linked to a luciferase reporter gene. Constructs that included nt -801 to -426 of the promoter sequence were found to enhance transcriptional activity ∼1.8-fold in cells treated with TGF-β1. Within this sequence, ∼500 nt upstream of the transcription start site, a putative TGF-β activation element (TAE) was identified that contained the 5′-portion of the nuclearfactor-1 (NF-1) canonical sequence (TTGGC) overlapping a consensus sequence for activator protein-2 (AP-2). The functionality of the TAE was shown by an increased binding of a nuclear protein from TGF-β1 stimulated cells in gel mobility shift assays and from the attenuation of TGF-β1-induced luciferase activity when cells were co-transfected with a double-stranded TAE oligonucleotide. Competition gel mobility shift analyses revealed that the nuclear protein that binds to the TAE has similar properties to, but is distinct from, NF-1 nuclear protein. These studies have therefore identified a TGF-β activation element (TAE) in the rat BSP gene promoter that mediates the stimulatory effects of TGF-β1 on BSP gene transcription. J. Cell. Biochem. 65:501-512. © 1997 Wiley-Liss Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 565-573 
    ISSN: 0730-2312
    Keywords: calcium-regulating hormones ; bone cells ; acridine orange ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoclasts, isolated from the endosteum of 2.5- to 3-week-old chickens, were treated with acridine orange, a hydrogen ion concentration-sensitive fluorescent dye, in order to monitor changes in acid production. The adenylate cyclase inhibitor, alloxan, blocked parathyroid hormone (PTH)-stimulated acid production. Dibutyryl cyclic adenosine monophosphate, a membrane-permeant form of cyclic adenosine monophosphate, mimicked the PTH effect. Bisindolylmaleimide, a specific inhibitor of protein kinase C (PKC), blocked the initial stimulation (15, 30, and 60 min) of acid production by PTH but had no effect on long-term stimulation (120 min). Confocal microscopy of osteoclasts stained with fluorescein-conjugated bisindolylmaleimide revealed a shift in location of PKC from the cytoplasm to the plasma membrane region after treatment with parathyroid hormone. The results of these studies support the hypothesis that PTH regulation of acid production in osteoclasts involves both adenylate cyclase and PKC as effectors. J. Cell. Biochem. 65:565-573. © 1997 Wiley-Liss Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 287-307 
    ISSN: 0730-2312
    Keywords: GA-binding protein ; rpL32 gene promoter ; ribosomes ; differentiation/dedifferentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Differentiation of BC3H1 myoblasts to myocytes is accompanied by a 67% drop in the rate of rpL32 gene transcription. Addition of high concentrations of serum to resting myocyte populations stimulates cell growth and subsequent dedifferentiation to proliferating myoblasts with a return to the normal rate of rpL32 gene transcription. During these growth rate changes the binding activities of previously identified factors (β, γ, δ) which interact with the rpL32 gene promoter were examined by mobility shift assays. Binding of the β factor (an Ets related protein) to an oligonucleotide containing the β element was reduced significantly in myocycle nuclear extracts, but subsequent dedifferentiation increased binding within 30 min in either the presence or absence of the cycloheximide. Binding of the γ and δ factors to their respective elements changed only slightly during these processes. Dephosphorylation of either myoblast or myocyte extracts resulted in increased binding of the β factor suggesting that binding activity of the β factor is modulated by phosphorylation during the changes in BC3H1 myoblasts growth rate. In addition, mobility shift assays with recombinant GABP α and β proteins and their specific antibodies revealed that GABP proteins bind to the rpL32 gene promoter in a sequence dependent manner, and that similar proteins are present in BC3H1 myoblast/myocyte extracts. These results support the premise that the GABP heterodimer is the rpL32 β factor. Furthermore, during BC3H1 myoblast differentiation and dedifferentiation neither the levels of the GABP α and β proteins nor their respective mRNAs change. These results suggest that GABP is a constitutively expressed protein and is involved in regulating rpL32 gene by post-transcriptional modifications. J. Cell. Biochem. 65:287-307. © 1997 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 340-348 
    ISSN: 0730-2312
    Keywords: estrogen ; Calbindin D28k ; rat ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In women, calcium excretion in the urine rises after menopause and falls with estrogen replacement therapy. The amount of calcium lost in the urine following estrogen therapy is less than should occur based on changes in serum calcium and the amount of calcium filtered by the kidney. This suggests there may be a direct effect of estrogen therapy to increase renal calcium reabsorption. Calbindin D28k is a putative calcium ferry protein located in the distal renal tubules which has been shown to increase transcellular calcium transport. We proposed that estrogen loss after menopause may diminish gene expression of renal calbindin D28k and subsequently diminish renal calcium reabsorption. We used the ovariectomized rat model of estrogen deficiency to investigate changes at the messenger RNA level of calbindin D28k in ovariectomized rats (OVX), sham ovariectomized rats (S-OVX), and estrogen treated ovariectomized rats (E-OVX). We have demonstrated that ovariectomy in rats diminishes the gene expression of renal calbindin D28k. The mRNA levels were approximately three times lower in OVX rats than S-OVX rats. Administration of 17β estradiol to OVX rats produced a significant increase in mRNA level to greater than the S-OVX rats by 4 h. Measurement of serum 1,25 dihydroxyvitamin D3 showed lower level in OVX rats than S-OVX rats but no significant change in E-OVX animals. In conclusion, our results indicate that estrogen increases renal calbindin D28k mRNA levels, by a mechanism independent of changes in 1,25 dihydroxyvitamin D3. This may result in increased expression of calbindin D28k protein which may have a role in reducing renal calcium excretion. J. Cell. Biochem. 65:340-348. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 0730-2312
    Keywords: lysyl oxidase ; vascular smooth muscle cells ; mRNA stability ; collagen ; elastin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β1 (TGF-β1) markedly reduced cell proliferation and elevated steady state lysyl oxidase (LO) mRNA 3-fold in neonatal rat aorta smooth muscle cells cultured in medium containing 10% fetal bovine serum. The increase in LO mRNA was prevented by the presence of cycloheximide, indicative of controlling events at the level of protein synthesis. The basal level of mRNA in cells proliferating in 10% fetal bovine serum in the absence of TGF-β1 was enhanced 7-fold upon decreasing growth by shifting to medium containing 0.5% serum. Changes in LO activity paralleled those in LO mRNA. Nuclear run-on assays revealed that the stimulation of expression in 0.5% serum involved increased gene transcription whereas that caused by TGF-β1 was mostly post-transcriptional in origin. LO mRNA was quite labile (t½ approximately 3 h) in 10% serum but was markedly stabilized (t½ 〉 12 h) by the presence of TGF-β1 in the 10% serum medium. LO mRNA was also considerably more stable under retarded growth conditions (0.5% serum) in the absence of TGF-β1. LO promoter activity in luciferase reporter constructs transfected into these cells was low and not significantly affected by the addition of TGF-β1 to the 10% serum medium but was markedly elevated by shifting from 10 to 0.5% serum in the absence of TGF-β1. Thus, LO expression is inversely correlated with cell proliferation, and is subject to control at transcriptional and post-transcriptional levels. TGF-β1 enhances LO expression in these cells by dramatically stabilizing LO mRNA. J. Cell. Biochem. 65:395-407. © 1997 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 443-459 
    ISSN: 0730-2312
    Keywords: Arabidosis thaliana ; HMG CoA reductase ; Hmg1p ; transmembrane domain ; protein ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the amino terminal membrane anchoring domain of Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmg1p), a key enzyme of the isoprenoid biosynthetic pathway. Using both in vitro and in vivo approaches, we have analyzed a series of recombinant derivatives to identify key structural elements which play a role in defining Hmg1p transmembrane topology. Based on our results, we have proposed a topological model for Hmg1p in which the enzyme spans the lipid bilayer twice. We have shown the two transmembrane segments, designated TMS1 and TMS2, to be structurally and functionally inequivalent in their ability to direct the targeting and orientation of reporter proteins. Furthermore, we provide evidence indicating both the extreme amino terminal end and carboxyl terminal domain of the protein reside in the cytosol. This model therefore provides a key basis for the future examination of the role of the transmembrane domain in the targeting and regulation of Hmg1p in plant cells. J. Cell. Biochem. 65:443-459. © 1997 Wiley-Liss Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 0730-2312
    Keywords: folate receptor ; folate uptake ; reduced folate carrier ; ovarian carcinoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated whether the folate receptor α-isoform (FRα), which is overexpressed on ovarian carcinoma cells, is functionally active in internalizing the physiological form of folate, 5-methyl tetrahydrofolate (THF). Six ovarian tumor cell lines, expressing different levels of FRα (COR ≫ OVCAR3 〉 IGROV1 〉 OVCAR4 〉 SKOV3 〉 OVCAR5), were maintained in folate-depleted medium and internalization of 10 nM evaluated as acid-resistant radioactivity at 0° and 37°C. The amount of 5-methyl[3H]THF present in this fraction was not strictly related to the number of membrane receptors, since even cell lines with low FRα expression, e.g., OVCAR4, showed efficient internalization. Time-course studies indicated that, whereas no uptake was detected at 0°C, at 37°C the internalized fraction showed a slow and constant increase, until 4 h. At this time, the internalized radioactivity represented 〈50% of the total bound in COR, OVCAR3 and IGROV1 cells, whereas the other cell lines tested internalized fourfold more folate than their surface binding capacity. The incubation in the presence of a concentration (50 nM) of 5-methyl[3H]THF, which best ensures receptors saturation on cells with highest FR levels (COR and OVCAR3), had slight effect on surface binding of all the tested cell lines, including IGROV1 and SKOV3. In contrast, the increase of the uptake was more pronounced, particularly in SKOV3 cells. These results, together with the accumulation curves of folic acid (FA) and 5-methylTHF at 37°C, suggested the presence of a molecule on ovarian carcinoma cells with high affinity for reduced folates, possibly a reduced folate carrier (RFC). Measurement of radioactivity present in the supernatant of IGROV1 and SKOV3 cells, subjected to hypotonic lysis and cell fractionation, further indicated that 5-methyl[3H]THF was translocated to the cytosol and, despite differences in membrane levels of FRα expression this internalized fraction was similar in both cell lines. Inhibition experiments to selectively block FRα or RFC activity showed a differential sensitivity of the two pathways depending on the cell line examined. Internalization was more consistently inhibited on IGROV1 than on SKOV3 cells by treatments that disrupt FRα activity, e.g., incubation with excess FA and phosphatidylinositol specific phospholipase C, whereas Probenecid, which preferentially inhibits the carrier-mediated pathway, showed a strong inhibitory effect on both cell lines. These findings suggest that the internalization of 5-methylTHF in these tumor cells depends not only on the level of overexpressed FRα, but another transport route, with features characteristic for RFC, is functional and participates in folate uptake. J. Cell. Biochem. 65:479-491. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 0730-2312
    Keywords: insulin resistance ; skeletal muscle ; NIDDM ; GTP-binding protein ; thin filaments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In order to characterize the endogenous gene product for rad (ras-related protein associated with diabetes), we prepared antibodies to synthetic peptides that correspond to amino acids (109-121, 178-195, 254-271) within the protein. These antibodies were used to analyze the expression, structure, and function of rad. Western analysis with these antibodies revealed that rad was a 46 kDa protein which was expressed during myotube formation. Further, immunolocalization studies showed that rad localized to thin filamentous regions in skeletal muscle. Interestingly, when muscle biopsies from diabetic and control Pima Indians were compared, no differences in rad protein or mRNA expression were observed. Similarly, no differences were observed in protein expression in diabetic and control Zucker diabetic fatty (ZDF) rats. Functional analysis of muscle rad revealed that its GTP-binding activity was inhibited by the addition of N-ethylmaliemide, GTP, GTPγS, and GDPβS but not ATP or dithiothreitol. Moreover, cytosol-dependent rad-GTPase activity was stimulated by the peptide corresponding to amino acids 109-121. Antibodies corresponding to this epitope inhibited cytosol-dependent rad-GTPase activity. Taken together, the results indicate that 1) rad is a 46 kDa GTP-binding protein localized to thin filaments in muscle and its expression increases during myoblast fusion, 2) expression of rad in Pima Indians and ZDF rats does not correlate with diabetes, and 3) the amino acids (109-121) may be involved in regulating rad-GTPase activity, perhaps by interacting with a cytosolic factor(s) regulating nucleotide exchange and/or hydrolysis. J. Cell. Biochem. 65:527-541. © 1997 Wiley-Liss Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 277-285 
    ISSN: 0730-2312
    Keywords: pRb ; p107 ; p130/Rb2 ; TBP ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The conserved region 1 and the extreme N-terminus of adenoviral oncoprotein E1A are essential for transforming activity. They also play roles in the interaction of E1A with p300/CBP and pRb and are involved in both transactivation and repression of host gene expression. It was reported recently that p53-mediated transactivation is specifically repressed by E1A and that p53-induced apoptosis can be protected by pRb. In this report, we investigated the roles of pRb and p300 in the N-terminus of E1A-mediated transcriptional regulation. We demonstrate here that p300 and pRb have no effect on DBD.1-70 transactivation and that overexpression of p300 or pRb failed to relieve the repression by E1A. Repression of p53 transactivation requires both the extreme amino terminus and CR1 but not CR2. This repressive activity of E1A specifically correlates with E1A's ability to bind p300 and TBP. On the other hand, E1A inhibited the transactivation activity of a fusion construct containing the DNA binding domain of yeast Gal4 and the transactivation domain of p53. When p53 was cotransfected with E1A, similar inhibition was found in Saos-2 cells that lack endogenous pRb and p53 activity. Introduction of pRb into Saos-2 cells did not affect p53 transcription activity. E1A-mediated repression can be relieved by overexpression of either p300, hTBP, or TFIIB but cannot be released by overexpression of pocket proteins. Our data suggest that p300/CBP and TBP but not the pocket proteins, pRb, p107, and pRb2/p130 are functional targets of E1A in transcriptional regulation and that p53 transactivation requires the function of the p300/TBP/TFIIB complex, thus delineating a new pathway by which E1A may exert its transforming activity. J. Cell. Biochem. 66:277-285, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 0730-2312
    Keywords: transcription ; promoter ; mRNA stability ; nucleic acid sequence ; matrix metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1β) is a potent cytokine that stimulates interstitial collagenase-1 (matrix metalloproteinase-1; MMP-1). In this study, we compared the mechanism(s) by which IL-1β induces collagenase gene expression in two very different cells, normal human foreskin fibroblasts (HFFs) and an aggressive breast cancer cell line, BC-8701 cells. Northern analysis showed that the time course of collagenase induction was distinct in the two cells: although both cells expressed low levels of MMP-1 constitutively, addition of IL-1β increased MMP-1 mRNA in HFFs by 1 h and levels remained high over a 24-h period. In contrast, MMP-1 levels in IL-1β-treated BC-8701 cells did not increase until 4 h, peaked by 12 h and then declined. To analyze the transcriptional response, we cloned and sequenced more than 4,300 bp of the human MMP-1 promoter, and from this promoter clone, we prepared a series of 5′-deletion constructs linked to the luciferase reporter and transiently transfected these constructs into both cell types to measure both basal and IL-1β induced transcription. When both cell types were uninduced, promoter fragments containing less than 2,900 bp gave only a minimal transcriptional response, while larger fragments showed increased transcriptional activity. With IL-1β treatment, significant responsiveness (P 〈 0.001) in HFFs was seen only with the larger fragments, while in the BC-8701 cells, all fragments were significantly induced with IL-1β. Finally, we found that IL-1β stabilized MMP-1 mRNA in normal fibroblasts, but not in BC-8701 breast cancer cells. We conclude that both the transcriptional and post-transcriptional regulation of MMP-1 gene expression by IL-1β is controlled by cell-type specific mechanisms, and we suggest that IL-1 induced MMP-1 expression in tumor cells and in neighboring stromal cells may amplify the invasive ability of tumor cells. J. Cell. Biochem. 66:322-336, 1977. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 370-385 
    ISSN: 0730-2312
    Keywords: nucleus ; glycoprotein ; lectin ; HL60 ; affinity chromatography ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Some years ago, a lectin designated CBP70 that recognized glucose (Glc) but had a stronger affinity for N-acetylglucosamine (GlcNAc), was first isolated from HL60 cell nuclei. Recently, a cytoplasmic form of this lectin was described, and one 82 kDa nuclear ligand was characterized for the nuclear CBP70. In the present study, the use of Pronase digestion and the trifluoromethanesulphonic acid (TFMS) procedure strongly suggest that the nuclear and the cytoplasmic CBP70 have a same 23 kDa polypeptide backbone and, consequently, could be the same protein. In order to know the protein better and to obtain the best recombinant possible in the future, the post-translational modification of the nuclear and cytoplasmic CBP70 was analyzed in terms of glycosylation. Severals lines of evidence indicate that both forms of CBP70 are N- and O-glycosylated. Surprisingly, this glycosylation pattern differs between the two forms, as revealed by β-elimination, hydrazinolysis, peptide-N-glycosydase F (PNGase F), and TFMS reactions. The two preparations were analyzed by affinity chromatography on immobilized lectins [Ricinus communis-I agglutinin (RCA-I), Arachis hypogaea agglutinin (PNA), Galanthus nivalis agglutinin (GNA), and wheat germ agglutinin (WGA)] and by lectin-blotting analysis [Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Lotus tetragonolobus (Lotus), succinylated-WGA, and Psathyrella velutina agglutinin (PVA)]. Both forms of CBP70 have the following sugar moities: terminal βGal residues, Galβ1-3 GalNAc, Man α1-3 Man, sialic acid α2-6 linked to Gal or GalNAc; and sialic acid α2-3 linked to Gal. However, only nuclear CBP70 have terminal GlcNAc and α-L-fucose residues.All these data are consistent with the fact that different glycosylation pattern found for each form of CBP70 might act as a complementary signal for cellular targeting. J. Cell. Biochem. 66:370-385, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0730-2312
    Keywords: vitamin D3 analogs ; 24-oxo metabolites ; growth inhibition ; differentiation ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The seco-steroid hormone, 1α,25 dihydroxyvitamin D3 (1α,25(OH)2D3) binds to a specific nuclear receptor that acts as a ligand-inducible transcription factor. The resulting genomic effects include partial arrest in G0/G1 of the cell cycle and induction of differentiation; these effects have been observed in various types of cancer. Recently, we produced enzymatically the natural 24-oxo metabolites of 1α,25(OH)2D3 and two of its potent synthetic analogs (1α,25-(OH)2-16-ene-D3 and 1α,25-(OH)2-20-epi-D3) using a rat kidney perfusion system. We have found that the 24-oxo metabolites of both 1α,25(OH)2D3 and its analogs have either the same or greater antiproliferative activity against various cancer cells as their parental compounds. Notably, two cell lines (DU-145 (prostate cancer) and MDA-MB-436 [breast cancer]) that were extremely resistant to the antiproliferative effects of vitamin D3 analogs displayed greater sensitivity towards the 24-oxo metabolite of the vitamin D3 analog. Similarly, the 24-oxo metabolites had the capacity to induce differentiation and apoptosis and to diminish the proportion of cells in S phase. Most interestingly, while the analog 1α,25(OH)2-20-epi-D3 induced expression of BRCA1 in MCF-7 breast cancer cells; its 24-oxo metabolite dramatically suppressed BRAC1 expression. Thus, we have shown for the first time that the various biological activities produced by the hormone 1α,25(OH)2D3 and some of its analogs may represent a combination of actions by the hormone 1α,25(OH)2D3 and its natural 24-oxo metabolites. J. Cell. Biochem. 66:413-425, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 0730-2312
    Keywords: bone morphogenetic protein ; defined media ; in vitro ; development ; stem cell ; ascorbic acid ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During embryonic development, cartilage formation involves the condensation of mesenchymal stem cells and a series of maturation steps that ultimately results in the mineralized hypertrophic chondrocyte. The embryonic, murine, mesenchymal stem cell line, C3H/10T1/2, is pluripotent; exposure to azacytidine or to bone morphogenetic protein-2 or -4 results in low rates of differentiation to three mesengenic lineages. In contrast to previous studies, we report conditions for 10T1/2 differentiation specifically to the cartilage lineage and at high yields. These conditions include high cell density micromass cultures, a purified mixture of osteoinductive proteins (BP; Intermedics Orthopedics, Denver, CO), a serum substitute, 50 μg/ml ascorbic acid, and 10 mM β-glycerophosphate. The cartilagenous fate was confirmed by 1) histological detection of sulfated proteoglycans, 2) electron microscopic detection of proteoglycan and rounded cells separated by extracellular matrix containing short, disorganized collagen fibrils, 3) morphological detection of a chondrocytes surrounded by a territorial matrix and encompassed within a distinct perichondrium, and 4) immunocytochemical detection of type II collagen and link protein. After 4 weeks in culture, mature although unmineralized cartilage was observed, as indicated by hypertrophic morphology, immunocytochemical detection of osteocalcin, and histological detection of lacunae. These conditions promote overt chondrogenesis for most of the treated cells and preclude lineage determination to the fat, muscle, and bone lineages, as assayed by electron microscopy and histomorphology. The faithful recapitulation of cartilage differentiation that we have established in vitro provides a versatile alternative to the use of chondrocyte and limb bud explant cultures. We propose this as a model system to study the factors that regulate commitment to the chondrogenic lineage, exclusion to related mesengenic pathways, and maturation during chondrogenesis. J. Cell. Biochem. 65:325-339. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 388-394 
    ISSN: 0730-2312
    Keywords: angiogenesis ; vasculogenesis ; collateral ; vessel ; development ; occlusion ; extracellular matrix ; collagenase ; collagen ; heart failure ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; growth factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heart failure secondary to ischemic cardiomyopathy is the primary cause of cardiovascular mortality. The promise of the collateral circulation lies in its potential to alter the course of the natural history of coronary heart disease. The collateral circulation of the heart is responsible for supplying blood and oxygen to the myocardium at ischemic risk following severe stenosis and reduced vasoelasticity function of a major coronary artery. In response to flow, stress, and pressure, collateral vessels are restructured and remodeled. Vascular remodeling by its very nature implies synthesis and degradation of extracellular matrix components in the vessel wall. Under normal physiological conditions proteinases that break down the specialized matrix are tightly regulated by antiproteinases. The balance between proteinase and antiproteinase influences is discoordinated during collateral development which leads to adaptive changes in the structure, function, and regulation of extracellular matrix components in the vessel wall. The role of extracellular matrix components in coronary collateral vessel formation in a canine model of chronic coronary artery occlusion has been demonstrated. The role of matrix proteinases and antiproteinases in the collateral vessel play a significant role in the underlying mechanisms of collateral development. This review presents new and significant information regarding the role of extracellular matrix proteinases and antiproteinases in vascular remodeling, function, and collateral development. Such information will have a significant impact on the understanding of the basic biology of the vascular extracellular matrix turnover, remodeling, and function as well as on elucidating potential avenues for pharmacological approaches designed to increase collateral formation and optimize myocardial blood flow in the treatment of ischemic heart disease. J. Cell. Biochem. 65:388-394. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 430-442 
    ISSN: 0730-2312
    Keywords: melatonin ; pineal gland ; cerebellum ; nitric oxide ; nitric oxide synthase ; calmodulin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Constitutive rat cerebellar nitric oxide synthase (NOS) activity is shown to be inhibited by physiological concentrations of the pineal hormone melatonin. The inhibition was dose-dependent and was coupled to an inhibition of the cyclic GMP production activated by L-arginine. Results also show that calmodulin appears to be involved in this process because its presence in the incubation medium was able to prevent the effect of melatonin on both NOS activity and cyclic GMP production. Moreover, polyacrylamide gel electrophoresis studies suggest that melatonin can interact with calmodulin modifying the binding of the peptide to the synthetic NOS peptide encompassing the calmodulin-binding domain of constitutive NOS from rat cerebellum, the natural mechanism by which calmodulin activates cerebellar NOS. J. Cell. Biochem. 65:430-442. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 469-478 
    ISSN: 0730-2312
    Keywords: actin autoregulation ; swinholide A ; dimeric actin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Regulation of the assembly and expression of actin is of major importance in diverse cellular functions such as motility and adhesion and in defining cellular and tissue architecture. These biological processes are controlled by changing the balance between polymerized (F) and soluble (G) actin. Previous studies have indicated the existence of an autoregulatory pathway that links the state of assembly and expression of actin, resulting in the reduction of actin synthesis after actin filaments are depolymerized. We have employed the marine toxins swinholide A and latrunculin A, both disrupting the organization of the actin-cytoskeleton, to determine whether this autoregulatory response is activated by a decrease in the level of polymerized actin or by an increase in monomeric actin concentrations in the cell. We showed that in cells treated with swinholide A the level of filamentous actin is decreased, and using a reversible cross-linking reagent, we found that actin dimers are formed. Latrunculin A also disassembled actin filaments, but produced monomeric actin, followed by a reduction in actin and vinculin expression, while swinholide A treatment elevated the synthesis of these proteins. In cells treated with both latrunculin A and swinholide A, dimeric actin was formed, and actin and vinculin synthesis were higher than in control cells. These results suggest that the substrate that confers an autoregulated reduction in actin expression is monomeric actin, and when its level is decreased by dimeric actin formation, actin synthesis is increased. J. Cell. Biochem. 65:469-478. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0730-2312
    Keywords: mitoxantrone ; drug resistance ; non-Pgp MDR ; rhodamine ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: MCF-7 human breast cancer cells selected in Adriamycin in the presence of verapamil developed a multidrug resistant phenotype, which was characterized by as much as 100,000-fold resistance to mitoxantrone, 667-fold resistance to daunorubicin, and 600-fold resistance to doxorubicin. Immunoblot and PCR analyses demonstrated no increase in MDR-1 or MRP expression in resistant cells, relative to parental cells. This phenotype is similar to one previously described in mitoxantrone-selected cells. The cells, designated MCF-7 AdVp, displayed a slower growth rate without alteration in topoisomerase IIα level or activity. Increased efflux and reduced accumulation of daunomycin and rhodamine were observed when compared to parental cells. Depletion of ATP resulted in complete abrogation of efflux of both daunomycin and rhodamine. No apparent alterations in subcellular daunorubicin distribution were observed by confocal microscopy. No differences were noted in intracellular pH. Molecular cloning studies using DNA differential display identified increased expression of the alpha subunit of the amiloride-sensitive sodium channel in resistant cells. Quantitative PCR studies demonstrated an eightfold overexpression of the alpha subunit of the Na+ channel in the resistant subline. This channel may be linked to the mechanism of drug resistance in the AdVp cells. The results presented here support the hypothesis that a novel energy-dependent protein is responsible for the efflux in the AdVp cells. Further identification awaits molecular cloning studies. J. Cell. Biochem. 65:513-526. © 1997 Wiley-Liss Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 550-564 
    ISSN: 0730-2312
    Keywords: ecto-PLC ; ecto-enzyme ; phosphoinositide-specific phospholipase C ; cell surface enzyme ; lyso-PI-cleaving PLC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A novel cell surface phosphoinositide-cleaving phospholipase C (ecto-PLC) activity was isolated from cultured cells by exploiting its presumed external exposure. Biotinylation of intact cells followed by solubilization of the biotinylated proteins from a membrane fraction and recovery onto immobilized-avidin beads, allowed assay of this cell surface enzyme activity apart from the background of the substantial family of intracellular PLCs. Several cell lines of differing ecto-PLC expression were examined as well as cells stably transfected to overexpress the glycosylphosphatidylinositol (GPI)-anchored protein human placental alkaline phosphatase (PLAP) as a cell surface enzyme marker. The resulting bead preparations from ecto-PLC positive cells possessed calcium-dependent PLC activity with preference for lysophosphatidylinositol (lysoPI) rather than phosphatidylinositol (PI). The function of ecto-PLC of intact cells evidently is not to release GPI-anchored proteins at the cell surface, as no detectable Ca2+-dependent release of overexpressed PLAP from ecto-PLC-positive cells was observed. To investigate the cell surface linkage of the ecto-PLC itself, intact cells were treated with bacterial PI-PLC to cleave simple GPI anchors, but no decrease in ecto-PLC activity was observed. High ionic strength washes of biotinylated membranes prior to the generation of bead preparations did not substantially reduce the lysoPI-PLC activity. The results verify that the ecto-PLC is truly cell surface-exposed, and unlike other members of the PLC family that are thought to be peripheral membrane proteins, this novel lysoPI-PLC is most likely a true membrane protein. J. Cell. Biochem. 65:550-564. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...