Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 600-603 (Sept. 2008), p. 167-170 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Thick (〉 25 µm) 4H n+ epitaxial layer growth was performed on 4H n+ substrates utilizing chlorine containing etch chemistries in a hot wall CVD system. Optimization of the n+ epitaxial layer growth was achieved by varying C/Si ratio and N2 flow. Desired epitaxial layers have doping levels 〉 5x1018 cm-3, epitaxial surface roughness 〈10 nm on a 20x20 µm area and overall micropipe density reduction. To confirm the conversion of micropipes into closed core screw dislocations, microscopic examination of the epitaxial and wafer surfaces was carried out after KOH etching. Grazing incidence x-ray topography (XRT) as well as cross sectional XRT and microscopy were also performed. The cross sectional evaluation showed that the dissociation of the micropipes occurs very close to the epitaxy/wafer interface
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...